Question

Solve the given initial value problem and determine at least approximately where the solution is valid....

Solve the given initial value problem and determine at least approximately where the solution is valid. (6x2+y−1)dx−(6y−x)dy=0, y(1)=0

y= ????? , the solution is valid as long as _____>=0

PLEASE help me and make sure it is in the format y=, and please explain how. Thank you.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the given initial value problem and determine at least approximately where the solution is valid....
Solve the given initial value problem and determine at least approximately where the solution is valid. (12x2+y−1)dx−(18y−x)dy=0, y(1)=0 y=   , the solution is valid as long as     ≥0
Solve the initial value problem and determine the interval in which the solution is valid. Round...
Solve the initial value problem and determine the interval in which the solution is valid. Round your answer to three decimal places. y′=6x^2/(6y^2−11), y(1)=0 2y^3=2x^3+11y-2 The solution is valid for (fill in the blank)<x<(fill in the blank)
In the following problems determine whether existence of at least one solution of the given initial...
In the following problems determine whether existence of at least one solution of the given initial value problem is thereby guaranteed and if so, whether the uniqueness of that solution is guaranteed. For each initial value problem determine all solutions and the intervals where they hold, if the case. (a) dy/dx = y^(1/3); y(1) = 1. (b) dy/dx = y^(1/3); y(1) = 0. (c) dy/dx =sqrt(x - y); y(2) = 1. Can you explain how can we approach these kind...
19. Solve the initial value problem and determine where the solution attains its maximum value. Please...
19. Solve the initial value problem and determine where the solution attains its maximum value. Please use good handwriting and show as many steps as possible. y'= 2cos(2x)/(3+2y), y(0)= -1
Solve the given initial-value problem by finding, as in Example 4 of Section 2.4, an appropriate...
Solve the given initial-value problem by finding, as in Example 4 of Section 2.4, an appropriate integrating factor. (x2 + y2 − 7) dx = (y + xy) dy, y(0) = 1
Consider the initial value problem dy/dx= 6xy2 y(0)=1 a) Solve the initial value problem explicitly b)...
Consider the initial value problem dy/dx= 6xy2 y(0)=1 a) Solve the initial value problem explicitly b) Use eulers method with change in x = 0.25 to estimate y(1) for the initial value problem c) Use your exact solution in (a) and your approximate answer in (b) to compute the error in your approximation of y(1)
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1. Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =   + h(y) Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt + (8y + 6t − 1) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
1)  Consider the following initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1 Let af/ax = (x + y)2 = x2 + 2xy + y2. Integrate each term of this partial derivative with respect to x, letting h(y) be an unknown function in y. f(x, y) =    + h(y) Find the derivative of h(y). h′(y) = Solve the given initial-value problem. 2) Solve the given initial-value problem. (6y + 2t − 3) dt...
Solve the given initial-value problem. (x + 2) dy dx + y = ln(x), y(1) =...
Solve the given initial-value problem. (x + 2) dy dx + y = ln(x), y(1) = 10 y(x) = Give the largest interval I over which the solution is defined. (Enter your answer using interval notation.) I =
Use the Laplace transform to solve the given initial-value problem. y'' − 6y' + 13y =...
Use the Laplace transform to solve the given initial-value problem. y'' − 6y' + 13y = 0,  y(0) = 0,  y'(0) = −5 #14 7.3 y(t) ? please show work and circle the answer
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT