Question

A function f on a measurable subset E of Rd is measurable if for all a...

A function f on a measurable subset E of Rd is measurable if for all a in R, the set

f-1([-∞,a)) = {x in E: f(x) < a} is measurable

Prove that if f is continuous on Rd then f is measurable

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A function f on a measurable subset E of Rd is measurable if for all a...
A function f on a measurable subset E of Rd is measurable if for all a in R, the set f-1([-∞,a)) = {x in E: f(x) < a} is measurable Prove or disprove the following functions are measurable: (a) f(x) = 8 (b) f(x) = x + 2 (c) f(x) = 3x (d) f(x) = x2
A function f is said to be Borel measurable provided its domain E is a Borel...
A function f is said to be Borel measurable provided its domain E is a Borel set and for each c, the set {x in E l f(x) > c} is a Borel set. Prove that if f and g are Borel measurable functions that are defined on E and are finite almost everywhere on E, then for any real numbers a and b, af+bg is measurable on E and fg is measurable on E.
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that...
Problem 2. Let F : R → R be any function (not necessarily measurable!). Prove that the set of points x ∈ R such that F(y) ≤ F(x) ≤ F(z) for all y ≤ x and z ≥ x is Borel set.
[Lebesgue measurability] Can anyone prove this? Let f : Rd → [0, ∞] be an unsigned...
[Lebesgue measurability] Can anyone prove this? Let f : Rd → [0, ∞] be an unsigned function. Prove that the function f is measurable. It is just an unsigned function. The question does not talk about if f is continuous or not. Thanks.
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
Problem 2. Prove that if a measurable subset E ⊂ [0, 1] satisfies m(E ∩ I)...
Problem 2. Prove that if a measurable subset E ⊂ [0, 1] satisfies m(E ∩ I) ≥ αm(I), for some α > 0 and all intervals I ⊂ [0, 1], then m(E) = 1. Hint: A corollary about points of density proved in the class, may help.
Let f be a function with measurable domain D. Then f is measurable if and only...
Let f be a function with measurable domain D. Then f is measurable if and only if the function g(x)={f(x) if x\in D ,0 if x \notin D } is measurable.
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function...
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function g:R→R such that C=g-1(0).
Problem 4. Let Λ be a diagonal matrix, with all λi,i > 0. Consider a measurable...
Problem 4. Let Λ be a diagonal matrix, with all λi,i > 0. Consider a measurable E ⊂ Rd . Define ΛE = {Λx : x ∈ E}. Prove that ΛE is measurable and m(ΛE) = [det(Λ)]m(E).