Question

Consider the function f(x) = 4/x. Suppose we want to find the length of the curve...

Consider the function f(x) = 4/x. Suppose we want to find the length of the curve of the graph from the point (1,4) to the point (4,1).  

  1. First, approximate the length of the curve by finding the length of the straight line from (1,4) to (4,1).
  2. Explain how to get better approximations for the length of the curve?
  3. Is the process you described in (2) a calculus idea? Why or why not?

Homework Answers

Answer #1

I've attached Handwritten solution for the given problem.

Please give a thumbs up

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the function f(x) = sin(x). Suppose we want to approximate f 0 (0) by using...
Consider the function f(x) = sin(x). Suppose we want to approximate f 0 (0) by using a forward difference approximation and a stepsize of h. How small must h be in order to guarantee that the absolute error in our approximation is less than 0.01?
Let f(x)=12x2. (a) If we wish to find the point Q=(x0,y0) on the graph of f(x)...
Let f(x)=12x2. (a) If we wish to find the point Q=(x0,y0) on the graph of f(x) that is closest to the point P=(4,1), what is the objective function? (Hint: optimize the square of the distance from P to Q.) Objective function: O(x)=O(x)=____________________________ (b) Find the point Q=(x0,y0)Q=(x0,y0) as described in part (a). Box your final answer. (c) Verify that the line connecting PP to QQ is perpendicular to the line tangent to f(x)f(x) at QQ. Hint: recall that the lines...
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat...
Consider the function f(x,y)=y+sin(x/y) a) Find the equation of the tangent plane to the graph offat the point(1,3) b) Find the linearization of the function f at the point(1;3)and use it to approximate f(0:9;3:1). c) Explain why f is differentiable at the point(1;3) d)Find the differential of f e) If (x,y) changes from (1,3) to (0.9,3.1), compare the values of ‘change in f’ and df
4. Consider the function z = f(x, y) = x^(2) + 4y^(2) (a) Describe the contour...
4. Consider the function z = f(x, y) = x^(2) + 4y^(2) (a) Describe the contour corresponding to z = 1. (b) Write down the equation of the curve obtained as the intersection of the graph of z and the plane x = 1. (c) Write down the equation of the curve obtained as the intersection of the graph of z and the plane y = 1. (d) Write down the point of intersection of the curves in (b) and...
1). Consider the following function and point. f(x) = x3 + x + 3;    (−2, −7) (a)...
1). Consider the following function and point. f(x) = x3 + x + 3;    (−2, −7) (a) Find an equation of the tangent line to the graph of the function at the given point. y = 2) Consider the following function and point. See Example 10. f(x) = (5x + 1)2;    (0, 1) (a) Find an equation of the tangent line to the graph of the function at the given point. y =
Given the function g(x) = x^4 – 5x, find the slope of the curve at the...
Given the function g(x) = x^4 – 5x, find the slope of the curve at the point (1,-4). Also, find an equation for the line tangent to the graph at this point.
If we want to minimize a function f(x) = e^(x^2) over R, then it is equivalent...
If we want to minimize a function f(x) = e^(x^2) over R, then it is equivalent to finding the root of f '(x). Starting with x0 = 1, can you perform 4 iterations of Newton's method to estimate the minimizer of f(x)? (Correct to four decimal places at each iteration).
Consider the function f(x) = √x and the point P(4,2) on the graph f. a)Graph f...
Consider the function f(x) = √x and the point P(4,2) on the graph f. a)Graph f and the secant lines passing through the point P(4, 2) and Q(x, f(x)) for x-values of 3, 5, and 8. b) Find the slope of each secant line. (Round your answers to three decimal places.) (line passing through Q(3, f(x))) (line passing through Q(5, f(x))) (line passing through Q(8, f(x))) c)Use the results of part (b) to estimate the slope of the tangent line...
Suppose f(x) = (2/x) + 5 . a. *Graph this function. b. *Find the equation of...
Suppose f(x) = (2/x) + 5 . a. *Graph this function. b. *Find the equation of the secant line to f(x) on the interval [1, 3]. Call this line g(x). Add g(x) to your graph c. Find the equation of the tangent line to f(x) at the point (2,6). Call this line h(x). Add h(x) to your graph. Please neatly show your work.
1)Consider the function f(x)f(x) whose second derivative is f″(x)=9x+8sin(x). If f(0)=4 and f′(0)=2, what is f(5)?...
1)Consider the function f(x)f(x) whose second derivative is f″(x)=9x+8sin(x). If f(0)=4 and f′(0)=2, what is f(5)? 2) Consider the function f(x)=(7/x^3)−(2/x^5). Let F(x) be the antiderivative of f(x) with F(1)=0.   3)Given that the graph of f(x) passes through the point (5,4) and that the slope of its tangent line at (x,f(x)) is 3x+3, what is  f(2)? Then F(2) equals