Question

Let R and S be commutative rings. Prove that (a; b) is a zero-divisor in R...

Let R and S be commutative rings. Prove that (a; b) is a zero-divisor in R ⊕ S if and only if a or b is a zero-divisor or exactly one of a or b is 0.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a commutative ring and let a ε R be a non-zero element. Show...
Let R be a commutative ring and let a ε R be a non-zero element. Show that Ia ={x ε R such that ax=0} is an ideal of R. Show that if R is a domain then Ia is a prime ideal
Let I be an ideal in a commutative ring R with identity. Prove that R/I is...
Let I be an ideal in a commutative ring R with identity. Prove that R/I is a field if and only if I ? R and whenever J is an ideal of R containing I, I = J or J = R.
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
Suppose that R is a commutative ring and I is an ideal in R. Please prove...
Suppose that R is a commutative ring and I is an ideal in R. Please prove that I is maximal if and only if R/I is a field.
Let R be a ring, and assume that r^2 = r for all r ∈ R....
Let R be a ring, and assume that r^2 = r for all r ∈ R. (a) Prove that r + r = 0 for all r ∈ R. (b) Prove that R is commutative.
2.23. Let R be a commutative ring. Suppose that P is a subset of R with...
2.23. Let R be a commutative ring. Suppose that P is a subset of R with the following properties: P1: For any element a ∈ R, one and only one of the following holds: a = 0, a ∈ P, or −a ∈ P. P2: P is closed under addition and multiplication. Define an order relation < on R by saying that for a, b ∈ R, a < b if b − a ∈ P. Show that < satisfies...
Let G be a group. Prove that following statements are equivalent. a.) G is commutative b.)...
Let G be a group. Prove that following statements are equivalent. a.) G is commutative b.) ∀ a,b ∈ G, (ab)2 = a2b2 c.) ∀ n ∈ N, ∀ a,b ∈ G, (ab)n = anbn
Let R be a commutative ring with unity. Let A consist of all elements in A[x]...
Let R be a commutative ring with unity. Let A consist of all elements in A[x] whose constant term is equal to 0. Show that A is a prime ideal of A[x]
Let I, M be ideals of the commutative ring R. Show that M is a maximal...
Let I, M be ideals of the commutative ring R. Show that M is a maximal ideal of R if and only if M/I is a maximal ideal of R/I.
8. Let a, b be integers. (a) Prove or disprove: a|b ⇒ a ≤ b. (b)...
8. Let a, b be integers. (a) Prove or disprove: a|b ⇒ a ≤ b. (b) Find a condition on a and/or b such that a|b ⇒ a ≤ b. Prove your assertion! (c) Prove that if a, b are not both zero, and c is a common divisor of a, b, then c ≤ gcd(a, b).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT