Question

2.23. Let R be a commutative ring. Suppose that P is a subset of R with...

2.23. Let R be a commutative ring. Suppose that P is a subset of R with the following properties: P1: For any element a ∈ R, one and only one of the following holds: a = 0, a ∈ P, or −a ∈ P. P2: P is closed under addition and multiplication. Define an order relation < on R by saying that for a, b ∈ R, a < b if b − a ∈ P. Show that < satisfies Axioms O1–O4 .

Axiom O1 (Trichotomy). For any two numbers, a and b, one and only one of the following statements is true: a < b, a = b, or b < a.

Axiom O2 (Transitivity). For any three numbers, a, b, and c, if a < b and b < c, then a < c.

Axiom O3 (Addition for Inequalities). For any three numbers, a, b, and c, if a < b then a + c < b + c.

Axiom O4 (Multiplication for Inequalities). For any three numbers, a, b, and c, if a < b and 0 < c, then ac < bc.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For each of the following sets X and collections T of open subsets decide whether the...
For each of the following sets X and collections T of open subsets decide whether the pair X, T satisfies the axioms of a topological space. If it does, determine the connected components of X. If it is not a topological space then exhibit one axiom that fails. (a) X = {1, 2, 3, 4} and T = {∅, {1}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}}. (b) X = {1, 2, 3, 4} and T...
A projective plane is a plane (S,L ) satisfying the following four axioms. P1. For any...
A projective plane is a plane (S,L ) satisfying the following four axioms. P1. For any two distinct points P and Q there is one and only one line containing P and Q. P2. For any two distinct lines l and m there exists one and only one point P belonging to l∩m. P3. There exist three noncollinear points. P4. Every line contains at least three points. a)Give an example of a plane (S,L) that satisfies axioms P1, P2 and...
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Using the following axioms: a.) (x+y)+x = x +(y+x) for all x, y in R (associative...
Using the following axioms: a.) (x+y)+x = x +(y+x) for all x, y in R (associative law of addition) b.) x + y = y + x for all x, y elements of R (commutative law of addition) c.) There exists an additive identity 0 element of R (x+0 = x for all x elements of R) d.) Each x element of R has an additive inverse (an inverse with respect to addition) Prove the following theorems: 1.) The additive...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
Consider an axiomatic system that consists of elements in a set S and a set P...
Consider an axiomatic system that consists of elements in a set S and a set P of pairings of elements (a, b) that satisfy the following axioms: A1 If (a, b) is in P, then (b, a) is not in P. A2 If (a, b) is in P and (b, c) is in P, then (a, c) is in P. Given two models of the system, answer the questions below. M1: S= {1, 2, 3, 4}, P= {(1, 2), (2,...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
(Monty Hall problem) Suppose you’re on a game show, and you’re given the choice of three...
(Monty Hall problem) Suppose you’re on a game show, and you’re given the choice of three doors, say Door 1, Door 2, and Door 3. Behind one door there is a car; behind the others, goats. Assume it is equally likely that the car is behind any door, i.e., P(D1) = P(D2) = P(D3). You will win whatever is behind the door you choose. (a) If you pick Door 1, what is your probability of winning the car? [2 point]...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT