Question

Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x...

Solve heat equation for the following conditions

ut = kuxx t > 0, 0 < x < ∞

u|t=0 = g(x)

ux|x=0 = h(t)

2. g(x) = 1 if x < 1 and 0 if x ≥ 1

h(t) = 0;

for k = 1/2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0 < x < 1 with boundary conditions ux (0, t ) = 0 and ux (1, t ) = 0, yields the general solution, ∞ u(x,t) = A0 + ?Ane−kλnt cos?nπx? (with λn = n2π2) n=1DeterminethecoefficientsAn(n=0,1,2,...)whenu(x,0)=f(x)= 0, 1/2≤x<1 .
Solve the heat equation ut = k uxx, 0 < x < L, t > 0...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0 u(0, t) = u(L, t) = 0, t > 0 u(x, 0) = f(x), 0 < x < L a) f(x) = 6 sin 9πx L b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3....
Solve the below boundary value equation 1. Ut=2uxx o<x<pi 0<t 2. u(0,t) = ux(pi,t) 0<t 3. u(x,0) = 1-2x 0<x<pi
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) =...
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) = 0 u(x, 0) = x − x ^3 (Provide all the details of separation of variables as well as the needed Fourier expansions.)
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x...
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x i) solve this problem by using the method of separation of variables. (Please, share the solution step by step) ii) graphically present two terms(binomial) solutions for u(x,1).
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0)...
Solve the wave equation: utt = c2uxx, 0<x<pi, t>0 u(0,t)=0, u(pi,t)=0, t>0 u(x,0) = sinx, ut(x,0) = sin2x, 0<x<pi
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut...
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x) a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution. b) What happens to the solution as t →...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT