Question

Solve the heat equation ut = k uxx, 0 < x < L, t > 0...

Solve the heat equation ut = k uxx, 0 < x < L, t > 0

u(0, t) = u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

a) f(x) = 6 sin 9πx L

b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x...
Solve heat equation for the following conditions ut = kuxx t > 0, 0 < x < ∞ u|t=0 = g(x) ux|x=0 = h(t) 2. g(x) = 1 if x < 1 and 0 if x ≥ 1 h(t) = 0; for k = 1/2
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar...
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x) using the Fourier sine transform.
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut...
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x) a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution. b) What happens to the solution as t →...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x...
Use the eigenfunction expansion to solve utt = uxx + e −t sin(3x), 0 < x < π u(x, 0) = sin(x), ut(x, 0) = 0 u(0, t) = 1, u(π, t) = 0. Your solution should be in the form of Fourier series. Write down the formulas that determine the coefficients in the Fourier series but do not evaluate the integrals
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) =...
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) = 0 u(x, 0) = x − x ^3 (Provide all the details of separation of variables as well as the needed Fourier expansions.)
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0 < x < 1 with boundary conditions ux (0, t ) = 0 and ux (1, t ) = 0, yields the general solution, ∞ u(x,t) = A0 + ?Ane−kλnt cos?nπx? (with λn = n2π2) n=1DeterminethecoefficientsAn(n=0,1,2,...)whenu(x,0)=f(x)= 0, 1/2≤x<1 .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT