Question

Expand the following periodic functions in the interval –pi < x < pi in a sine...

Expand the following periodic functions in the interval –pi < x < pi in a sine Cosine Fourier Series
1. F (x) = 0 -pi < x < pi/2
= 1 Pi/2 < x <pi
2. F(x) = 0 -pi <x < pi
= x 0 < x < pi

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Expand the function f(x) = x^2 in a Fourier sine series on the interval 0 ≤...
Expand the function f(x) = x^2 in a Fourier sine series on the interval 0 ≤ x ≤ 1.
Fourier Series Expand each function into its cosine series and sine series for the given period...
Fourier Series Expand each function into its cosine series and sine series for the given period P=2 f(x) = x, 0<=x<5 f(x) = 1, 5<=x<10
Find the Fourier cosine series and sine series, respectively, for the even and odd periodic extensions...
Find the Fourier cosine series and sine series, respectively, for the even and odd periodic extensions of the following function: f(x)= x if 0<x<π/2.   2 if π/2<x<π. Graph f with its periodic extensions (up to n = 4) using Mathematica.(leave codes here)
Fourier Series Expand each function into its cosine series and sine series for the given period...
Fourier Series Expand each function into its cosine series and sine series for the given period P = 2π f(x) = cos x
Expand the given function in an appropriate cosine or sine series. f(x) = π, −1 <...
Expand the given function in an appropriate cosine or sine series. f(x) = π, −1 < x < 0 −π,    0 ≤ x < 1
(a) expand f(x)=8, 0<x<3 into cosine series period 6 (b) expand f(x)=8, 0<x<3 into a sine...
(a) expand f(x)=8, 0<x<3 into cosine series period 6 (b) expand f(x)=8, 0<x<3 into a sine series period 6 (c) determine value each series converges to when x=42 (d) graph (b) for 3 periods, over the interval [-9,9]
Expand the Fourier Series. f(x) = 1- x, -pi < x < pi
Expand the Fourier Series. f(x) = 1- x, -pi < x < pi
1. Find the Fourier cosine series for f(x) = x on the interval 0 ≤ x...
1. Find the Fourier cosine series for f(x) = x on the interval 0 ≤ x ≤ π in terms of cos(kx). Hint: Use the even extension. 2. Find the Fourier sine series for f(x) = x on the interval 0 ≤ x ≤ 1 in terms of sin(kπx). Hint: Use the odd extension.
Find the: (a) Fourier cosine series (b) Fourier sine series for the following shape using half...
Find the: (a) Fourier cosine series (b) Fourier sine series for the following shape using half range expressions f(x)=x^(2), 0 less than or equal to x less than or equal to 1
Expand in Fourier Series. f(x) = (sinx)^3, -pi < x < pi
Expand in Fourier Series. f(x) = (sinx)^3, -pi < x < pi
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT