Question

2. Prove that the set of finite sequences of lower case letters (a, b, c, ....

2. Prove that the set of finite sequences of lower case letters (a, b, c, . . ., z) is countable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove for each: a. Proposition: If A is finite and B is countable, then A ∪...
Prove for each: a. Proposition: If A is finite and B is countable, then A ∪ B is countable. b. Proposition: Every subset A ⊆ N is finite or countable. [Similarly if A ⊆ B with B countable.] c. Proposition: If N → A is a surjection, then A is finite or countable. [Or if countable B → A surjection.]
Prove that the set of all finite subsets of Q is countable
Prove that the set of all finite subsets of Q is countable
Show (prove) that the set of sequences of 0s and 1s with only finitely many nonzero...
Show (prove) that the set of sequences of 0s and 1s with only finitely many nonzero terms should be countable. Will rate a thumbs up. Thank you.
Let S denote the set of all possible finite binary strings, i.e. strings of finite length...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length made up of only 0s and 1s, and no other characters. E.g., 010100100001 is a finite binary string but 100ff101 is not because it contains characters other than 0, 1. a. Give an informal proof arguing why this set should be countable. Even though the language of your proof can be informal, it must clearly explain the reasons why you think the set should...
[Q] Prove or disprove: a)every subset of an uncountable set is countable. b)every subset of a...
[Q] Prove or disprove: a)every subset of an uncountable set is countable. b)every subset of a countable set is countable. c)every superset of a countable set is countable.
Prove whether or not the set ? is countable. a. ? = [0, 0.001) b. ?...
Prove whether or not the set ? is countable. a. ? = [0, 0.001) b. ? = ℚ x ℚ I do not really understand how to prove S is countable.
Prove that a disjoint union of any finite set and any countably infinite set is countably...
Prove that a disjoint union of any finite set and any countably infinite set is countably infinite. Proof: Suppose A is any finite set, B is any countably infinite set, and A and B are disjoint. By definition of disjoint, A ∩ B = ∅ Then h is one-to-one because f and g are one-to one and A ∩ B = 0. Further, h is onto because f and g are onto and given any element x in A ∪...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Prove that the set of 2×2 matrices with natural number entries is countable.
Prove that the set of 2×2 matrices with natural number entries is countable.
Prove that a subset of a countably infinite set is finite or countably infinite.
Prove that a subset of a countably infinite set is finite or countably infinite.