Question

Prove whether or not the set ? is countable. a. ? = [0, 0.001) b. ?...

Prove whether or not the set ? is countable.

a. ? = [0, 0.001)

b. ? = ℚ x ℚ

I do not really understand how to prove S is countable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
[Q] Prove or disprove: a)every subset of an uncountable set is countable. b)every subset of a...
[Q] Prove or disprove: a)every subset of an uncountable set is countable. b)every subset of a countable set is countable. c)every superset of a countable set is countable.
41. Prove that a proper subset of a countable set is countable
41. Prove that a proper subset of a countable set is countable
Prove that any countable subset of [a,b] has measure zero. Recall that a set S has...
Prove that any countable subset of [a,b] has measure zero. Recall that a set S has measure zero if  there is a countable collection of open intervals  with .
Use the fact that “countable union of disjoint countable sets is countable" to prove “the set...
Use the fact that “countable union of disjoint countable sets is countable" to prove “the set of all polynomials with rational coefficients must be countable.”
Prove that the set of real numbers of the form e^n,n= 0,=+-1,+-2,... is countable.
Prove that the set of real numbers of the form e^n,n= 0,=+-1,+-2,... is countable.
Prove that the set of constructible numbers is countable
Prove that the set of constructible numbers is countable
Suppose A is an infinite set and B is countable and disjoint from A. Prove that...
Suppose A is an infinite set and B is countable and disjoint from A. Prove that the union A U B is equivalent to A by defining a bijection f: A ----> A U B. Thus, adding a countably infinite set to an infinite set does not increase its size.
Prove that a countable union of countable sets countable; i.e., if {Ai}i∈I is a collection of...
Prove that a countable union of countable sets countable; i.e., if {Ai}i∈I is a collection of sets, indexed by I ⊂ N, with each Ai countable, then union i∈I Ai is countable. Hints: (i) Show that it suffices to prove this for the case in which I = N and, for every i ∈ N, the set Ai is nonempty. (ii) In the case above, a result proven in class shows that for each i ∈ N there is a...
Prove that the set of all finite subsets of Q is countable
Prove that the set of all finite subsets of Q is countable
Prove or provide a counterexample If A is a nonempty countable set, then A is closed...
Prove or provide a counterexample If A is a nonempty countable set, then A is closed in T_H.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT