Question

The life in hours of a battery is known to be approximately normally distributed with standard...

The life in hours of a battery is known to be approximately normally distributed with standard deviation σ = 1.5 hours. A random sample of 10 batteries has a mean life of ¯x = 50.5 hours. You want to test H0 : µ = 50 versus Ha : µ 6= 50.

(a) Find the test statistic and P-value.

(b) Can we reject the null hypothesis at the level α = 0.05?

(c) Compute a two-sided 95% confidence interval for the mean battery life.

(d) What sample size would be required to ensure that β does not exceed 0.10 if the true mean life is 48 hours?

Homework Answers

Answer #1

x = 50.5, σ = 1.5, n = 10, µ = 50

a) Test statistic: z = (x-µ)/(σ/n^0.5) = (50.5-50)/(1.5/10^0.5) = 1.054

p-value (Using Excel function NORM.S.DIST(z,cumulative)) = NORM.S.DIST(1.054,TRUE) = 0.854

b) Since p-value is more than 0.05, we do not the null hypothesis and conclude that µ = 50.

c) 95% confidence interval:

z0.05/2 = 1.96

x ± z*(σ/n^0.5) = 50.5 ± 1.96*(1.5/10^0.5) = 50.5 ± 0.93 = 49.57 < µ < 51.43

d) b = 48, µ = 50, σ= 1.5, β = 01.0

z = (b-µ)/(σ/n^0.5) = (50-48)/(1.5/n^0.5)

P(z) = β =0.10

Using standard normal tables, z = 3.06

(50-48)/(1.5/n^0.5) = 3.06

1.5/n^0.5 = 2/3.06 = 0.65

n^0.5 = 1.5/0.65 = 2.31

n = 2.31^2 = 5.34

n = 5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The life in hours of a battery is known to be normally distributed with ?=1.25 hours....
The life in hours of a battery is known to be normally distributed with ?=1.25 hours. A random sample of 10 batteries has a mean life of ?̅=30.5 hours. Is there evidence to support the claim that battery life exceeds 32 hours? Is the alternative hypothesis one or two sided? Do you reject the null hypothesis? Use ?=0.05
1. The life in hours of a battery is normally distributed with σ = 1.25 hours....
1. The life in hours of a battery is normally distributed with σ = 1.25 hours. A random sample of 10 batteries has a mean life of 40.6 hours. Is there evidence to support the claim that battery life exceeds 40 hours? Use α = 0.05. You may use the traditional or P-value method. 2. Repeat exercise #1 if we do not know σ, but estimate the population S.D. using s = 1. Use the traditional method.
The life span of a battery is normally​ distributed, with a mean of 2400 hours and...
The life span of a battery is normally​ distributed, with a mean of 2400 hours and a standard deviation of 50 hours. What percent of batteries have a life span that is more than 2460 ​hours? Would it be unusual for a battery to have a life span that is more than 2460 ​hours? Explain your reasoning. What percent of batteries have a life span that is more than 2460 ​hours? Approximately_______% of batteries have a life span that is...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a mean of 85 hours and a standard deviation of 11 hours. Complete parts a through c. a. What is the probability that a single battery randomly selected from the population will have a life between 80 and 90​ hours? ​P(80≤ overbar x≤90​)= ​(Round to four decimal places as​ needed.) b. What is the probability that 4 randomly sampled batteries from the population will have...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a mean of 80 hours and a standard deviation of 11 hours. Complete parts a through c. a. What is the probability that a single battery randomly selected from the population will have a life between and hours? 75 85 P(75 ≤ x ≤ 85) = (Round to four decimal places as needed.) b. What is the probability that randomly sampled batteries from the population...
The life in hours of a 75-W light bulb is known to be approximately normally distributed,...
The life in hours of a 75-W light bulb is known to be approximately normally distributed, with a standard deviation of σ = 25 hours. A random sample of 20 bulbs has a mean life of x¯ = 1014 hours. Suppose we wanted to be 90% confidence that the error in estimating the mean life in hours is less than 10. What sample size should be used? NOTE: This requires an INTEGER.
Let μ denote the mean lifetime (in hours) for a certain type of battery under controlled...
Let μ denote the mean lifetime (in hours) for a certain type of battery under controlled laboratory conditions. A test of H0: μ = 10 versus Ha: μ < 10 will be based on a sample of size 36. Suppose that σ is known to be 0.6, so σx = 0.1. The appropriate test statistic is then z = x − 10 0.1 (a) What is α for the test procedure that rejects H0 if z ≤ −1.38? (Round your...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a mean of 75 hours and a standard deviation of 9 hours. Complete parts a through c. a. What is the probability that a single battery randomly selected from the population will have a life between 70 and 80 ​hours? ​P(70 < or = x overbar < or = 80​) = 0.4246 ​(Round to four decimal places as​ needed.) b. What is the probability that...
The life in hours of a 75-watt light bulb is known to be normally distributed with...
The life in hours of a 75-watt light bulb is known to be normally distributed with σ = 22 hours. A random sample of 20 bulbs has a mean life of x = 1014 hours. Suppose that we wanted the total width of the two-sided confidence interval on mean life to be six hours at 95% confidence. What sample size should be used? Round up the answer to the nearest integer.
The lifetime of a certain type of battery is known to be normally distributed with a...
The lifetime of a certain type of battery is known to be normally distributed with a population standard deviation of 20 hours. A sample of 50 batteries had a mean lifetime of 120.1 hours. a. What is the point estimate? b. Calculate the sampling error. c. Construct a 95% confidence interval for the population mean. Explain the answer in a sentence.