Question

The quality control manager at a light bulb factory needs to estimate the mean life of...

The quality control manager at a light bulb factory needs to estimate the mean life of a large shipment of light bulbs. The standard deviation is 104 hours. A random sample of 64 light bulbs indicated a sample mean life of 390 hours. Complete parts​ (a) through​ (d) below.

Construct a 99 % confidence interval estimate for the population mean life of light bulbs in this shipment.

c. Must you assume that the population light bulb life is normally​ distributed? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. The quality control manager at a light-bulb factory needs to estimate the mean life of...
1. The quality control manager at a light-bulb factory needs to estimate the mean life of a new type of light-bulb. The population standard deviation is assumed to be 45 hours. A random sample of 37 light-bulbs shows a sample mean life of 470 hours. Construct and explain a 99% confidence interval estimate of the population mean life of the new light-bulb.
The quality control manager at a light bulb factory needs to estimate the mean life of...
The quality control manager at a light bulb factory needs to estimate the mean life of a large shipment of light bulbs. The standard deviation is 98 hours. A random sample of 49 light bulbs indicated a sample mean life of 300 hours. (a) Construct a 99​% confidence interval estimate for the population mean life of light bulbs in this shipment. (Ans.) The 99% confidence interval estimate is from a lower limit of 263.9 hours to an upper limit of...
The quality control manager at a light-bulb factory needs to estimate the mean life of a...
The quality control manager at a light-bulb factory needs to estimate the mean life of a new type of light-bulb. The population standard deviation is assumed to be 65 hours. A random sample of 40 light-bulbs shows a sample mean life of 505 hours. Construct and explain a 95% confidence interval estimate of the population mean life of the new light-bulb. what size sample would be needed to achieve a margin of error of 15 hours or less?
The quality control manager at a light-bulb factory needs to estimate the mean life of a...
The quality control manager at a light-bulb factory needs to estimate the mean life of a new type of light-bulb. The population standard deviation is assumed to be 50 hours. A random sample of 35 light-bulbs shows a sample mean life of 490 hours. Construct and explain a 90% confidence interval estimate of the population mean life of the new light-bulb. What size sample would be needed to achieve a margin of error of 15 hours or less? Show all...
The quality control manager at a light bulb factory needs to estimate the mean life of...
The quality control manager at a light bulb factory needs to estimate the mean life of a large shipment of light bulbs. The standard deviation is 91 hours. A random sample of 49 light bulbs indicated a sample mean life of 290 hours. Complete parts​ (a) through​ (d) below. A. Construct a 99​% confidence interval estimate for the population mean life of light bulbs in this shipment. The 99​% confidence interval estimate is from a lower limit of [ ]...
The quality control manager at a light bulb factory needs to estimate the mean life of...
The quality control manager at a light bulb factory needs to estimate the mean life of a large shipment of light bulbs. The standard deviation is 98 hours. A random sample of 49 light bulbs indicated a sample mean life of 300 hours. Suppose the standard deviation changes to 77 hours. What are your answers in​ (a) and​ (b)? (Ans.) The 99​% confidence interval estimate would be from a lower limit of 271.7 hours to an upper limit of 328.3...
The​ quality-control manager at a compact fluorescent light bulb​ (CFL) factory needs to determine whether the...
The​ quality-control manager at a compact fluorescent light bulb​ (CFL) factory needs to determine whether the mean life of a large shipment of CFLs is equal to 7540 hours. The population standard deviation is 735 hours. A random sample of 49 light bulbs indicates a sample mean life of 7,288 hours. Construct a​ 95% confidence interval estimate of the population mean life of the light bulbs? ___ <= MU <= ___ (Round to the nearest whole number as​ needed.)
The quality control manager at a light bulb factory needs to estimate the mean life of...
The quality control manager at a light bulb factory needs to estimate the mean life of a large shipment of light bulbs. The standard deviation is 7878 hours. A random sample of 3636 light bulbs indicated a sample mean life of 280280 hours. Complete parts​ (a) through​ (d) below. a. Construct a 9595​% confidence interval estimate for the population mean life of light bulbs in this shipment.The 9595​% confidence interval estimate is from a lower limit of 254.5254.5 hours to...
The​ quality-control manager at a compact fluorescent light bulb​ (CFL) factory needs to determine whether the...
The​ quality-control manager at a compact fluorescent light bulb​ (CFL) factory needs to determine whether the mean life of a large shipment of CFLs is equal to 7,499 hours. The population standard deviation is 100 hours. A random sample of 64 light bulbs indicates a sample mean life of 7,474 hours. a. At the 0.05 level of​ significance, is there evidence that the mean life is different from 7,499 hours? b. Compute the​ p-value and interpret its meaning. c. Construct...
The​ quality-control manager at a compact fluorescent light bulb​ (CFL) factory needs to determine whether the...
The​ quality-control manager at a compact fluorescent light bulb​ (CFL) factory needs to determine whether the mean life of a large shipment of CFLs is equal to 7,463 hours. The population standard deviation is 100 hours. A random sample of 64 light bulbs indicates a sample mean life of 7,438 hours. a. At the 0.05 level of​ significance, is there evidence that the mean life is different from 7,463 hours? b. Compute the​ p-value and interpret its meaning. c. Construct...