Question

Calculate the Y values corresponding to the X values given below. Find the critical values for...

Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0. Be sure to indicate the sign (+ or -) of dy/dx and of d2y/dx2 tabled values. Reference Power Point Lesson 13 as needed. Using the first and second derivative tests with the information you have calculated, determine which X value(s) represent maximums (MAX), which minimums (MIN) and which inflection points (INF). Label the qualifying X value as such. Attach work to convince me you carried out these calculations. An Excel spreadsheet can make calculations easier. If used, please attach the spreadsheet file and upload it with the rest of your work so that I can examine your formulas. The beginning (-1.333) and ending X values (1.333) below are not to be considered critical values. In the space after the instructions for the “Bonus Opportunity” write the first derivative (dy/dx or Y’). Set this equal to zero and solve for the X values that make it equal to zero. Also write the second derivative (d2y/dx2or Y”). Set this equal to zero and solve for the X values that make it equal to zero. Complete the table by following the example on the cover of the Assignment 6 folder and/or in Power Point Lesson 13View the scoring rubric to see how point values are awarded for correct calculations.

                                                Y = 2X3 +2X2 -2X -3

X

-1.333

-1

-.667

-.333

0

.333

.667

1.333

Y

dy/dx

d2y/dx2

Label Point

(MAX, MIN, INF)

Twenty point Bonus Opportunity (creditable toward the maximum of 1000 points). Use the nine X values and their Y values you found above (which include the critical values) to help neatly draw the graph of this polynomial function over the range of X values given.   Alternatively use a spreadsheet to plot it. Your graph must be consistent with the tabled values above (which means, if you claim a certain X value is a maximum, then the graph of it should show this same value as a maximum. Similarly, if you claim an X value is an inflection point, then the graph of it should show it to be so. If the derivatives signal a X value as a minimum, the graph should show the same minimum, too. The point is, if you figure out how the derivatives SIGNAL which X values are critical points, the graph of the values should show them as such. Be certain to indicate these critical values with labels on the X axis of your graph.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed. Using the...
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed. Using the...
Find dy/dx and d2y/dx2. x = t2 + 6,    y = t2 + 7t For which values...
Find dy/dx and d2y/dx2. x = t2 + 6,    y = t2 + 7t For which values of t is the curve concave upward? (Enter your answer using interval notation.)
Find dy/dx and d2y/dx2 for the given parametric curve. For which values of t is the...
Find dy/dx and d2y/dx2 for the given parametric curve. For which values of t is the curve concave upward? x = t3 + 1, y = t2 − t
a) Find f(x) is f(x) is differentiable everywhere and f'(x)= { 2x+8, x<2 3x2, x>2 given...
a) Find f(x) is f(x) is differentiable everywhere and f'(x)= { 2x+8, x<2 3x2, x>2 given f(1)=1 b) the point (-1,2) is on the graph of y2-x2+2x=5. Approximate the value of y when x=1.1. Then use dy/dx and d2y/dx2 to determine if the point (1,-2) is a max, min, or neither.
List these six partial derivatives for z = 3 x2 y + cos (x y) –...
List these six partial derivatives for z = 3 x2 y + cos (x y) – ex+y dz/dx dz/dy d2z/dx2 d2z/ dy2 d2z/dxdy d2z/dydx                   Evaluate the partial derivative            dz        at the point (2, 3, 30) for the function z = 3 x4 – x y2 dx
The curvature at a point P of a curve y = f(x) is given by the...
The curvature at a point P of a curve y = f(x) is given by the formula below. k = |d2y/dx2| 1 + (dy/dx)2 3/2 (a) Use the formula to find the curvature of the parabola y = x2 at the point (−2, 4). (b) At what point does this parabola have maximum curvature?
Suppose that f(x)=x−3x^1/3 (A) Find all critical values of f. If there are no critical values,...
Suppose that f(x)=x−3x^1/3 (A) Find all critical values of f. If there are no critical values, enter -1000. If there are more than one, enter them separated by commas. Critical value(s) = (B) Use interval notation to indicate where f(x) is increasing. Note: When using interval notation in WeBWorK, you use INF for ∞∞, -INF for −∞−∞, and U for the union symbol. If there are no values that satisfy the required condition, then enter "{}" without the quotation marks....
Consider y = 1 + 3x– 4x3.     a. State the domain.   ____________        b. State the range.   ____________        c....
Consider y = 1 + 3x– 4x3.     a. State the domain.   ____________        b. State the range.   ____________        c. Find the y-intercept.   ____________        d. Find the x-intercept(s).   ____________        e. State the equation of the horizontal asymptote, if any.   ____________       f. State the equation of the slant asymptote, if any.   ____________        g. State the equation of the vertical asymptote, if any.   ____________       h. State the interval(s) on which the function is decreasing.   ____________       i. State the interval(s) on which the function is increasing.   ____________        j. Find dy/dx.   ____________     k. Find the local...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical Numbers and determine the intervals where h(x) is increasing and decreasing. Find the point of inflection (if it exists) and determine the intervals where h(x) concaves up and concaves down. Find the local Max/Min (including the y-coordinate)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT