Question

Calculate the Y values corresponding to the X values given below. Find the critical values for...

Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed. Using the first and second derivative tests with the information you have calculated, determine which X value(s) represent maximums (MAX), which minimums (MIN) and which inflection points (INF). Label the qualifying X value as such. Attach work to convince me you carried out these calculations. An Excel spreadsheet can make calculations easier. If used, please attach the spreadsheet file and upload it with the rest of your work so that I can examine your formulas. The beginning and ending X values below are not to be considered critical values. In the space after the “Bonus Opportunity” write the first derivative (dy/dx) and the second derivative (d2y/dx2) you used or you will not receive credit for them.

                                                Y = X3 -5X2 -8X +20

                                                                                                                                                           

X

-1.333

-.667

0

1

1.667

3

4

5

Y

dy/dx

d2y/dx2

Label Point

(MAX, MIN, INF)

Twenty point Bonus Opportunity (creditable toward the maximum of 600 exercise points). Use the eight X values and their Y values you found above (which include the critical values) to help neatly sketch the graph of this polynomial function over the range of X values given.   Alternatively use a spreadsheet to plot it. Your sketch must be consistent with the tabled values above (which means, if you claim a certain X value is a maximum, then the graph of it should show this same value as a maximum. Similarly, if you claim an X value is an inflection point, then the graph of it should show it to be so. A minimum should graph as a minimum, too. The point is, if you figure out how the derivatives SIGNAL which X values are critical points, the graph of the values should show them as such.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed. Using the...
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0. Be sure to indicate the sign (+ or -) of dy/dx and of d2y/dx2 tabled values. Reference Power Point Lesson 13 as needed. Using the first and second derivative tests with the information you...
a) Find f(x) is f(x) is differentiable everywhere and f'(x)= { 2x+8, x<2 3x2, x>2 given...
a) Find f(x) is f(x) is differentiable everywhere and f'(x)= { 2x+8, x<2 3x2, x>2 given f(1)=1 b) the point (-1,2) is on the graph of y2-x2+2x=5. Approximate the value of y when x=1.1. Then use dy/dx and d2y/dx2 to determine if the point (1,-2) is a max, min, or neither.
Find dy/dx and d2y/dx2 for the given parametric curve. For which values of t is the...
Find dy/dx and d2y/dx2 for the given parametric curve. For which values of t is the curve concave upward? x = t3 + 1, y = t2 − t
Find dy/dx and d2y/dx2. x = t2 + 6,    y = t2 + 7t For which values...
Find dy/dx and d2y/dx2. x = t2 + 6,    y = t2 + 7t For which values of t is the curve concave upward? (Enter your answer using interval notation.)
The curvature at a point P of a curve y = f(x) is given by the...
The curvature at a point P of a curve y = f(x) is given by the formula below. k = |d2y/dx2| 1 + (dy/dx)2 3/2 (a) Use the formula to find the curvature of the parabola y = x2 at the point (−2, 4). (b) At what point does this parabola have maximum curvature?
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical...
Given the function h(x)=e^-x^2 Find first derivative f ‘ and second derivative f'' Find the critical Numbers and determine the intervals where h(x) is increasing and decreasing. Find the point of inflection (if it exists) and determine the intervals where h(x) concaves up and concaves down. Find the local Max/Min (including the y-coordinate)
Suppose that f(x)=x−3x^1/3 (A) Find all critical values of f. If there are no critical values,...
Suppose that f(x)=x−3x^1/3 (A) Find all critical values of f. If there are no critical values, enter -1000. If there are more than one, enter them separated by commas. Critical value(s) = (B) Use interval notation to indicate where f(x) is increasing. Note: When using interval notation in WeBWorK, you use INF for ∞∞, -INF for −∞−∞, and U for the union symbol. If there are no values that satisfy the required condition, then enter "{}" without the quotation marks....
Given the function f(?) = ?^3 − 9?^2 + 24? − 2, a) Find the critical...
Given the function f(?) = ?^3 − 9?^2 + 24? − 2, a) Find the critical numbers and make a sign diagram for the first derivative. b) Find the possible inflection points and make a sign diagram for the second derivative. c) Using the information to sketch the graph of the function and show the local mins and maximums and the inflection points on the graph.
Consider y = 1 + 3x– 4x3.     a. State the domain.   ____________        b. State the range.   ____________        c....
Consider y = 1 + 3x– 4x3.     a. State the domain.   ____________        b. State the range.   ____________        c. Find the y-intercept.   ____________        d. Find the x-intercept(s).   ____________        e. State the equation of the horizontal asymptote, if any.   ____________       f. State the equation of the slant asymptote, if any.   ____________        g. State the equation of the vertical asymptote, if any.   ____________       h. State the interval(s) on which the function is decreasing.   ____________       i. State the interval(s) on which the function is increasing.   ____________        j. Find dy/dx.   ____________     k. Find the local...