Question

Feature X has a uniform distribution X ∼ U([a, b]) where 0 ≤ a < b...

Feature X has a uniform distribution X ∼ U([a, b]) where 0 ≤ a < b ≤ 1. Find maximum likelihood estimation and Bayesian estimation of X given a sample x1 = .8, x2 = .2, x3 = .9, x4 = .1. For Bayesian estimation, the prior probability density of a and b is P(a, b) = 2 where a <= b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Feature X has a uniform distribution X ∼ U([a, b]) where 0 ≤ a < b...
Feature X has a uniform distribution X ∼ U([a, b]) where 0 ≤ a < b ≤ 1. Find maximum likelihood estimation and Bayesian estimation of X given a sample x1 = .8, x2 = .2, x3 = .9, x4 = .1. For Bayesian estimation, the prior probability density of a and b is P(a, b) = 2 where a <= b.
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x =...
A geometric distribution has a pdf given by P(X = x) = p(1-p)^x, where x = 0, 1, 2,..., and 0 < p < 1. This form of the geometric starts at x=0, not at x=1. Given are the following properties: E(X) = (1-p)/p and Var(X) = (1-p)/p^2 A random sample of size n is drawn, the data x1, x2, ..., xn. Likelihood is p = 1/(1+ x̄)) MLE is p̂ = 1/(1 + x̄)) asymptotic distribution is p̂ ~...
X is said to have a uniform distribution between (0, c), denoted as X ~ U(0,...
X is said to have a uniform distribution between (0, c), denoted as X ~ U(0, c), if its probability density function f(x) has the following form f(x) = (1/c , if 0<x<c, 0 otherwise) (a) (2pts) Write down the pdf for X ~ U(0, 2). (b) (3pts) Find the cumulative distribution function (cdf) F(x) of X ~ U(0, 2). (c) Find the mean, second moment, variance, and standard deviation for X ~ U(0, 2). (d) Let Y be the...
X is said to have a uniform distribution between (0, c), denoted as X ⇠ U(0,...
X is said to have a uniform distribution between (0, c), denoted as X ⇠ U(0, c), if its probability density function f(x) has the following form f(x) = (1 c , if x 2 (0, c), 0 , otherwise . (a) (2pts) Write down the pdf for X ⇠ U(0, 2). (b) (3pts) Find the cumulative distribution function (cdf) F(x) of X ⇠ U(0, 2). (Caution: Please specify the function values for all 1 (c) Find the mean, second...
A uniform random variable on (0,1), X, has density function f(x) = 1, 0 < x...
A uniform random variable on (0,1), X, has density function f(x) = 1, 0 < x < 1. Let Y = X1 + X2 where X1 and X2 are independent and identically distributed uniform random variables on (0,1). 1) By considering the cumulant generating function of Y , determine the first three cumulants of Y .
Problem 1. The Cauchy distribution with scale 1 has following density function f(x) = 1 /...
Problem 1. The Cauchy distribution with scale 1 has following density function f(x) = 1 / π [1 + (x − η)^2 ] , −∞ < x < ∞. Here η is the location and rate parameter. The goal is to find the maximum likelihood estimator of η. (a) Find the log-likelihood function of f(x) l(η; x1, x2, ..., xn) = log L(η; x1, x2, ..., xn) = (b) Find the first derivative of the log-likelihood function l'(η; x1, x2,...
Let X2, ... , Xn denote a random sample from a discrete uniform distribution over the...
Let X2, ... , Xn denote a random sample from a discrete uniform distribution over the integers - θ, - θ + 1, ... , -1, 0, 1, ... ,  θ - 1,  θ, where  θ is a positive integer. What is the maximum likelihood estimator of  θ? A) min[X1, .. , Xn] B) max[X1, .. , Xn] C) -min[X1, .. , Xn​​​​​​​] D) (max[X1, .. , Xn​​​​​​​] - min[X1, .. , Xn​​​​​​​]) / 2 E) max[|X1| , ... , |Xn|]
Let X1, . . . , X10 be iid Bernoulli(p), and let the prior distribution of...
Let X1, . . . , X10 be iid Bernoulli(p), and let the prior distribution of p be uniform [0, 1]. Find the Bayesian estimator of p given X1, . . . , X10, assuming a mean square loss function.
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ],...
Suppose that X1,..., Xn form a random sample from the uniform distribution on the interval [0,θ], where the value of the parameter θ is unknown (θ>0). (1)What is the maximum likelihood estimator of θ? (2)Is this estimator unbiased? (Indeed, show that it underestimates the parameter.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT