Question

Problem 1. The Cauchy distribution with scale 1 has following density function f(x) = 1 /...

Problem 1. The Cauchy distribution with scale 1 has following density function
f(x) = 1 / π [1 + (x − η)^2 ] , −∞ < x < ∞.
Here η is the location and rate parameter. The goal is to find the maximum likelihood estimator of η.

(a) Find the log-likelihood function of f(x)

l(η; x1, x2, ..., xn) = log L(η; x1, x2, ..., xn) =

(b) Find the first derivative of the log-likelihood function

l'(η; x1, x2, ..., xn) =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x)...
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x) = theta(1-x)^(theta-1), where 0<x<1, where theta is a positive unknown parameter a) Find the method of moments estimator of theta b) Find the maximum likelihood estimator of theta c) Show that the log likelihood function is maximized at theta(hat)
Find the maximum likelihood estimator (MLE) for the parameter t in the Cauchy probability density f(x;t)=...
Find the maximum likelihood estimator (MLE) for the parameter t in the Cauchy probability density f(x;t)= 1/ [ Pi t(1+(x/t)^2]
Find the maximum likelihood estimator (MLE) for the parameter t in the Cauchy probability density f(x;t)=...
Find the maximum likelihood estimator (MLE) for the parameter t in the Cauchy probability density f(x;t)= 1/ [ Pi t(1+(x/t)^2]
Let X1, ..., Xn be a random sample from a probability density function: f(x; β) =...
Let X1, ..., Xn be a random sample from a probability density function: f(x; β) = βxβ−1 for 0 < x < 1 (where β > 0). a) Obtain the moment estimator for β. b) Obtain the maximum likelihood estimator for β. c) Is each of the estimators of a) and b) a sufficient statistic?
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It...
1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It has a mean and variance both equal to k. (a) Use the method of moments to find an estimator for k. (b) Use the maximum likelihood method to find an estimator for k. (c) Show that the estimator you got from the first part is an unbiased estimator for k. (d) (5 points) Find an expression for the variance of the estimator you have...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from...
6. Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/(xlnθ) , 1 < x < θ. a) Obtain the maximum likelihood estimator of θ, ˆθ. b) Is ˆθ a consistent estimator of θ? Justify your answer.
Let X1, X2 · · · , Xn be a random sample from the distribution with...
Let X1, X2 · · · , Xn be a random sample from the distribution with PDF, f(x) = (θ + 1)x^θ , 0 < x < 1, θ > −1. Find an estimator for θ using the maximum likelihood
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT