Question

The population of lengths of aluminum-coated steel sheets is normally distributed with a mean of 30.0...

The population of lengths of aluminum-coated steel sheets is normally distributed with a mean of 30.0 inches and a standard deviation of 0.9 inches. A sample of 36 metal sheets is randomly selected from a batch. What is the probability that the average length of a sheet is between 29.82 and 30.27 inches long?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the population of lengths of aluminum-coated steel sheets is approximately normally distributed with a...
Suppose that the population of lengths of aluminum-coated steel sheets is approximately normally distributed with a mean of 30.5 inches and a standard deviation of 0.2 inch. What is the probability that a sheet selected at random from the population is between 30.25 and 30.75 inches long?
1) The population of lengths of aluminum-coated steel sheets is normally distributed with a mean of...
1) The population of lengths of aluminum-coated steel sheets is normally distributed with a mean of 30.05 inches and a standard deviation of 0.2 inches. a) What is the probability that a sheet selected at random will be less than 29.75 inches long? 2) The weight of a product is normally distributed with a mean of four ounces and a variance of .25 ounces. a) What is the probability that a randomly selected unit from a recently manufactured batch weighs...
1) A company produces steel rods. The lengths of the steel rods are normally distributed with...
1) A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 183.4-cm and a standard deviation of 1.3-cm. Find the probability that the length of a randomly selected steel rod is between 179.9-cm and 180.3-cm. P(179.9<x<180.3)=P(179.9<x<180.3)= 2) A manufacturer knows that their items have a normally distributed length, with a mean of 6.3 inches, and standard deviation of 0.6 inches. If 9 items are chosen at random, what is the probability that...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 255.9 cm and a standard deviation of 0.9 cm. For shipment, 23 steel rods are bundled together. Note: Even though our sample size is less than 30, we can use the z score because 1) The population is normally distributed and 2) We know the population standard deviation, sigma. Find the probability that the average length of a randomly selected bundle of...
A: Given that the length an athlete throws a hammer is a normal random variable with...
A: Given that the length an athlete throws a hammer is a normal random variable with mean 50 feet and standard deviation 5 feet, what is the probability he throws it between 50 feet and 60 feet? B: The population of lengths of aluminum-coated steel sheets is normally distributed with a mean of 30 inches and a standard deviation of 0.5 inches. What is the probability that a sheet selected at random will be less than 29 inches long?
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 98.8 cm and a standard deviation of 2.5 cm. For shipment, 22 steel rods are bundled together. Note: Even though our sample size is less than 30, we can use the z score because 1) The population is normally distributed and 2) We know the population standard deviation, sigma. Find the probability that the average length of a randomly selected bundle of...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 91.1-cm and a standard deviation of 0.5-cm. For shipment, 25 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 90.8-cm. P(M > 90.8-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 226.6-cm and a standard deviation of 1.7-cm. For shipment, 10 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 227.9-cm. P(M < 227.9-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 211.4-cm and a standard deviation of 1.3-cm. For shipment, 5 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 211.5-cm. P(M > 211.5-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 129.2-cm and a standard deviation of 0.5-cm. For shipment, 27 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 129.3-cm. P(M > 129.3-cm) = __________
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT