Question

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 226.6-cm and a standard deviation of 1.7-cm. For shipment, 10 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 227.9-cm. P(M < 227.9-cm) =

Answer #1

Solution :

Given that,

mean = = 226.6

standard deviation = = 1.7

n = 10

= 226.6

= ( /n) = (1.7 / 10 ) = 0.5375

P(M < 227.9)

P ( M - / ) < ( 227.9 - 226.6 / 0.5375)

P ( z < 1.3 / 0.5375 )

P ( z < 2.42 )

Using z table

= 0.9922

Probability = 0.9922

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 91.1-cm and a standard
deviation of 0.5-cm. For shipment, 25 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is greater than 90.8-cm.
P(M > 90.8-cm) =

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 211.4-cm and a standard
deviation of 1.3-cm. For shipment, 5 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is greater than 211.5-cm.
P(M > 211.5-cm) =

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 110.9-cm and a standard
deviation of 0.6-cm. For shipment, 7 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 110.9-cm.
P(M < 110.9-cm) = ______________
Enter your answer as a number accurate to 4 decimal places.

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 127.8-cm and a standard
deviation of 1.6-cm. For shipment, 16 steel rods are bundled
together. Find the probability that the average length of a
randomly selected bundle of steel rods is greater than 126.7-cm.
P(M > 126.7-cm) = Enter your answer as a number accurate to 4
decimal places.

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 170.5-cm and a standard
deviation of 1.1-cm. For shipment, 12 steel rods are bundled
together. Find the probability that the average length of a
randomly selected bundle of steel rods is between 171-cm and
171.5-cm. P(171-cm < M < 171.5-cm) = Enter your answer as a
number accurate to 4 decimal places.

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 179-cm and a standard deviation
of 2.4-cm. For shipment, 12 steel rods are bundled together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 177.8-cm.
P(M < 177.8-cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
obtained using exact z-scores or z-scores rounded
to 3 decimal places are...

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 122.8-cm and a standard
deviation of 0.6-cm. For shipment, 6 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 122.7-cm.
P(M < 122.7-cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
obtained using exact z-scores or z-scores rounded
to 3 decimal places are...

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 263.6 cm and a standard
deviation of 0.5 cm. For shipment, 27 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 263.6 cm.
P(¯xx¯ < 263.6 cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
should be obtained using zz scores rounded to...

1. A company produces steel rods. The lengths of the steel rods
are normally distributed with a mean of 116.7-cm and a standard
deviation of 1.8-cm. For shipment, 22 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 116.8-cm.
P( x < 116.8-cm) =
2. CNNBC recently reported that the mean annual cost of auto
insurance is 1010 dollars. Assume the standard deviation is 216
dollars....

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 246.7-cm and a standard
deviation of 0.8-cm. For shipment, 23 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is greater than 246.6-cm.
P(M > 246.6-cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
obtained using exact z-scores or z-scores rounded
to 3 decimal places are...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 3 minutes ago

asked 23 minutes ago

asked 23 minutes ago

asked 29 minutes ago

asked 29 minutes ago

asked 29 minutes ago

asked 30 minutes ago

asked 37 minutes ago

asked 47 minutes ago

asked 48 minutes ago

asked 48 minutes ago