Question

Number of visits to an emergency center is modeled as a poisson process with an average...

Number of visits to an emergency center is modeled as a poisson process with an average number of arravals being 6 per hour. What is the probability that it will take more than 15 minutes for the next two arrivals?

PLEASE SHOW ALL WORK

Homework Answers

Answer #1

Since it is difficult to calculate the value of exponential so i have put it as it is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Number of visits to an emergency center is modeled as a Poisson process with average number...
Number of visits to an emergency center is modeled as a Poisson process with average number of arrivals being 6 per hour. What is the probability that it will take more than 15 minutes for the next two arrivals?
The number of people arriving for treatment at an emergency room can be modeled by a...
The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of four per hour. (a) What is the probability that exactly two arrivals occur during a particular hour? (Round your answer to three decimal places.) (b) What is the probability that at least two people arrive during a particular hour? (Round your answer to three decimal places.) (c) How many people do you expect to arrive during a...
Number of patients that arrive in a hospital emergency center between 6 pm and 7 pm...
Number of patients that arrive in a hospital emergency center between 6 pm and 7 pm is modeled by a Poisson distribution with λ=3.5. Determine the probability that the number of arrivals in this time period will be Exactly four At least two At most three
The number of people arriving for treatment at an emergency room can be modeled by a...
The number of people arriving for treatment at an emergency room can be modeled by a Poisson process with a rate parameter of five per hour. By using Poisson Distributions. Find: (i) What is the probability that exactly four arrivals occur during a particular hour? (ii) What is the probability that at least four people arrive during a particular hour? (iii) What is the probability that at least one person arrive during a particular minute? (iv) How many people do...
A student receiving texts can be modeled as a Poisson process at a rate of 3...
A student receiving texts can be modeled as a Poisson process at a rate of 3 per hour. a) What is the probability that the student receives 2 or more texts in the next 30 minutes? b) Given that the student received 3 texts in the last 10 minutes, what is the probability that the next text will arrive within 15 minutes? c) Among a group of 10 students, what is the probability that at least 2 will receive at...
The number of telephone calls per unit of time made to a call center is often...
The number of telephone calls per unit of time made to a call center is often modeled as a Poisson random variable. Historical data suggest that on the average 15 calls per hour are received by the call center of a company. What is the probability that the time between two consecutive calls is longer than 8 minutes? Write all probability values as numbers between 0 and 1.
The emergency telephone (911) center in a large city receives an average of 120 calls per...
The emergency telephone (911) center in a large city receives an average of 120 calls per hour during a typical day. On average, each call requires about 121 seconds for a dispatcher to receive the emergency call, determine the nature and location of the problem, and send the required individuals (police, firefighters, or ambulance) to the scene. The center is currently staffed by 4 dispatchers a shift but must have an adequate number of dispatchers on duty and it has...
Suppose the time a student takes on an exam can be modeled by a Poisson process...
Suppose the time a student takes on an exam can be modeled by a Poisson process with a mean of 20 questions per hour Let X denote the number of questions completed. A)What is the probability of a student finishing exactly 18 questions in the next hour? B)What is the probability of a student finishing exactly 12 questions in 30 minutes? C) What is the probability of finishing at least 1 question in the next minute?
Suppose the time a student takes on an exam can be modeled by a Poisson process...
Suppose the time a student takes on an exam can be modeled by a Poisson process with a mean of 20 questions per hour Let X denote the number of questions completed. A)What is the probability of a student finishing exactly 18 questions in the next hour? B)What is the probability of a student finishing exactly 12 questions in 30 minutes? C) What is the probability of finishing at least 1 question in the next minute?
4. The emergency telephone (911) center in a large city receives an average of 132 hourly...
4. The emergency telephone (911) center in a large city receives an average of 132 hourly calls per day. On average, each call requires about 85 seconds for a dispatcher to receive the emergency call, determine the nature and location of the problem, and send the required individuals (police, firefighters, or ambulance) to the scene. The center is currently staffed by 3 dispatchers a shift but must have an adequate number of dispatchers on duty and it has asked a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT