Question

It’s been estimated that if a truck collides with a car, the damage to the car...

  1. It’s been estimated that if a truck collides with a car, the damage to the car one is AC = $4,000. There is no damage to the truck. The probability of a collision is described by p(sT, sC) = (sT2+ sC2)/100,000, where sT is the truck speed and sC is the car speed, in km/h. The maximum speed the vehicles are capable of is 100 km/h.

Each driver can take precautions; assume the only feasible precaution is to reduce the speed. The cost of taking precautions by the truck driver is 4×(100 – sT), that is the truck driver loses $4 value for every 1 km/h slowing down. The cost of taking precautions by the truck driver is 3×(100 – sC), that is the car driver loses $3 value for every 1 km/h slowing down.

  1. What are the efficient speeds by each driver? How often do collisions happen (i.e., what is the probability of a collision p) at the efficient speeds?

  1. Suppose the rule is no liability = nobody compensates anyone else for the damages, in case of an accident. What speed would the truck driver choose? What speed would the car driver choose? How often do collisions happen (i.e., what is the probability of a collision p) at these chosen speeds?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
It’s been estimated that if a truck collides with a car, the damage to the car...
It’s been estimated that if a truck collides with a car, the damage to the car one is AC = $4,000. There is no damage to the truck. The probability of a collision is described by p(sT, sC) = (sT2+ sC2)/100,000, where sT is the truck speed and sC is the car speed, in km/h. The maximum speed the vehicles are capable of is 100 km/h. Each driver can take precautions; assume the only feasible precaution is to reduce the...
It’s been estimated that if a truck collides with a car, the damage to the car...
It’s been estimated that if a truck collides with a car, the damage to the car one is AC = $4,000. There is no damage to the truck. The probability of a collision is described by p(sT, sC) = (sT2+ sC2)/100,000, where sT is the truck speed and sC is the car speed, in km/h. The maximum speed the vehicles are capable of is 100 km/h. Each driver can take precautions; assume the only feasible precaution is to reduce the...
A car of mass 1478 kg collides head-on with a parked truck of mass 2000kg. Spring...
A car of mass 1478 kg collides head-on with a parked truck of mass 2000kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what is the initial speed of the car?
a truck m2=3500kg collides with a stationary car m1=1700kg. after collision, both vehicle move together with...
a truck m2=3500kg collides with a stationary car m1=1700kg. after collision, both vehicle move together with speed +1.5m/s a.what type of collision is this, and what physical quantity is conserved? b.calculate initial velocityof truck in km/h c. what is the change ib kinetic enegy of system? d.what happened to energy lost in collision?
What tools could AA leaders have used to increase their awareness of internal and external issues?...
What tools could AA leaders have used to increase their awareness of internal and external issues? ???ALASKA AIRLINES: NAVIGATING CHANGE In the autumn of 2007, Alaska Airlines executives adjourned at the end of a long and stressful day in the midst of a multi-day strategic planning session. Most headed outside to relax, unwind and enjoy a bonfire on the shore of Semiahmoo Spit, outside the meeting venue in Blaine, a seaport town in northwest Washington state. Meanwhile, several members of...