Question

Consider the trash bag problem. Suppose that an independent laboratory has tested trash bags and has...

Consider the trash bag problem. Suppose that an independent laboratory has tested trash bags and has found that no 30-gallon bags that are currently on the market have a mean breaking strength of 50 pounds or more. On the basis of these results, the producer of the new, improved trash bag feels sure that its 30-gallon bag will be the strongest such bag on the market if the new trash bag’s mean breaking strength can be shown to be at least 50 pounds. The mean of the sample of 39 trash bag breaking strengths in Table 1.9 is x¯ = 50.573. If we let µ denote the mean of the breaking strengths of all possible trash bags of the new type and assume that σ equals 1.61:

(a) Calculate 95 percent and 99 percent confidence intervals for µ. (Round your answers to 3 decimal places.)

Homework Answers

Answer #1

Given the sample size and sample mean , population standard deviation .

Since the population standard deviation is known, we use z-distribution.

The hypotheses are

The above test is a right tailed test. The below confidence intervals are for a two-tailed z-test.

The confidence interval for mean is

a) The 95% confidence interval is

The 99% confidence interval is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the trash bag problem. Suppose that an independent laboratory has tested trash bags and has...
Consider the trash bag problem. Suppose that an independent laboratory has tested trash bags and has found that no 30-gallon bags that are currently on the market have a mean breaking strength of 50 pounds or more. On the basis of these results, the producer of the new, improved trash bag feels sure that its 30-gallon bag will be the strongest such bag on the market if the new trash bag’s mean breaking strength can be shown to be at...
Recall that the trash bag manufacturer has concluded that its new 30-gallon bag will be the...
Recall that the trash bag manufacturer has concluded that its new 30-gallon bag will be the strongest such bag on the market if its mean breaking strength is at least 50 pounds. In order to provide statistical evidence that the mean breaking strength of the new bag is at least 50 pounds, the manufacturer randomly selects a sample of n bags and calculates the mean ¯ x of the breaking strengths of these bags. If the sample mean so obtained...
Recall that the trash bag manufacturer has concluded that its new 30-gallon bag will be the...
Recall that the trash bag manufacturer has concluded that its new 30-gallon bag will be the strongest such bag on the market if its breaking strength is at least 50 pounds. Suppose that (unknown to the manufacturer) the breaking strengths of the new 30-gallon bag are normally distributed with a mean of μ = 50.6 pounds and a standard deviation of σ = 1.62 pounds. C1. Find probability that the breaking strength is between 50 and 51 pounds(Use the online...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT