Question

The probability that a certain type of transistor will last more than 2,000 hours of use...

The probability that a certain type of transistor will last more than 2,000 hours of use is 0.6. If 100 transistors are selected at random what is the probability that:
a. Does not less than 60 nor more than 70 last more than 2,000 hours?
b. Does at least 50 last more than 2,000 hours?

Homework Answers

Answer #1

a);

b)

please like ??

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the average lifetime of a transistor is 100 working hours and that the lifetime...
Suppose that the average lifetime of a transistor is 100 working hours and that the lifetime distribution is exponential. (a) Estimate the probability that the transistor will work at least 30 hours. (b) Given that the transistor has functioned for 30 hours, what is the chance that it fails in the next 25 hours. (c) Suppose that two transistors, one in active, the other in reserve (if the primary one malfunctions, the second will be used at once). What is...
Suppose that when a transistor of a certain type is subjected to an accelerated life test,...
Suppose that when a transistor of a certain type is subjected to an accelerated life test, the lifetime X (in weeks) has a gamma distribution with mean 20 weeks and standard deviation 10 weeks. (a) What is the probability that a transistor will last between 10 and 20 weeks? (Round your answer to three decimal places.) (b) What is the probability that a transistor will last at most 20 weeks? (Round your answer to three decimal places.) Is the median...
The life of an electronic transistor is normally distributed, with a mean of 500 hours and...
The life of an electronic transistor is normally distributed, with a mean of 500 hours and a standard deviation of 80 hours. a. Determine the probability that a transistor will last for more than 400 hours. b. Determine the probability that a transistor will be between 360 hours and 600 hours. c. Determine the probability that a transistor will be less than 340 hours.
Suppose that when a transistor of a certain type is subjected to an accelerated life test,...
Suppose that when a transistor of a certain type is subjected to an accelerated life test, the lifetime X (in weeks) has a gamma distribution with mean 28 weeks and standard deviation 14 weeks. (a) What is the probability that a transistor will last between 14 and 28 weeks? (Round your answer to three decimal places.) (b) What is the probability that a transistor will last at most 28 weeks? (Round your answer to three decimal places.) (c) What is...
Suppose that when a transistor of a certain type is subjected to an accelerated life test,...
Suppose that when a transistor of a certain type is subjected to an accelerated life test, the lifetime X (in weeks) has a gamma distribution with mean 40 and variance 320. a) What is the probability that a transistor will last between 1 and 40 weeks? b) What is the probability that a transistor will last at most 40 weeks?
For a certain type of computers, the length of time between charges of the battery is...
For a certain type of computers, the length of time between charges of the battery is normally distributed with a mean of 42 hours and a standard deviation of 18 hours. a. If 20 computers are randomly selected, what is the probability that the mean charging time of their batteries is more than 45 hours? b. If 38 computers are randomly selected, what is the probability that the mean charging time of their batteries is between 37 and 40 hours?...
For a certain type of computers, the length of time between charges of the battery is...
For a certain type of computers, the length of time between charges of the battery is normally distributed with a mean of 50 hours and a standard deviation of 15 hours. John owns one of these computers and want to know the probability that the length of time will be between 50 and 70 hours. Entry to a certain University is determined by a national test.  The scores on this test are normally distributed with a mean of 500 and...
The life of a certain AAA batteries is normally distributed with a variance of 100 hours...
The life of a certain AAA batteries is normally distributed with a variance of 100 hours and mean of 550 hours. Find the probability that a battery chosen at random will last no more than 568 hours
A company that produces cell phone batteries claims their new battery last more than 30 hours....
A company that produces cell phone batteries claims their new battery last more than 30 hours. To investigate this claim a consumer advocacy group collected the following random sample for number hours that each battery worked: 50, 40, 35, 25, 60, 45, 30, 50, 30, 10. Is there a sufficient evidence to accept the company’s claims using 0.01 significance level?
A battery company claims that its batteries last an average of 100 hours under normal use....
A battery company claims that its batteries last an average of 100 hours under normal use. After several complaints that the batteries do not last this long, an independent testing laboratory decided to test the company’s claim with a random sample of 42 batteries. The data from the 42 batteries appeared to be unimodal and symmetric with a mean 97 hours and a standard deviation of 12 hours. Is this evidence that the company’s claim is false and these batteries...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT