Use the given information to find the number of degrees of freedom, the critical values chi Subscript Upper L Superscript χ2L and chi Subscript Upper R Superscript 2 χ2R, and the confidence interval estimate of sigma σ. It is reasonable to assume that a simple random sample has been selected from a population with a normal distribution. Nicotine in menthol cigarettes 80% confidence; n equals=29 s equals=0.26 mg.
Area to the Right of the Critical Value
Degrees of Freedom 0.995 0.99
0.975 0.95 0.9 0.1
0.05 0.025 0.01
0.005 Degrees of Freedom
1 - - 0.001
0.004 0.016 2.706
3.841 5.024 6.635
7.879 1
2 0.01 0.02 0.051
0.103 0.211 4.605
5.991 7.378 9.21
10.597 2
3 0.072 0.115 0.216
0.352 0.584 6.251
7.815 9.348 11.345
12.838 3
4 0.207 0.297 0.484
0.711 1.064 7.779
9.488 11.143 13.277
14.86 4
5 0.412 0.554 0.831
1.145 1.61 9.236
11.071 12.833 15.086
16.75 5
6 0.676 0.872 1.237
1.635 2.204 10.645
12.592 14.449 16.812
18.548 6
7 0.989 1.239 1.69
2.167 2.833 12.017
14.067 16.013 18.475
20.278 7
8 1.344 1.646 2.18
2.733 3.49 13.362
15.507 17.535 20.09
21.955 8
9 1.735 2.088 2.7
3.325 4.168 14.684
16.919 19.023 21.666
23.589 9
10 2.156 2.558
3.247 3.94 4.865
15.987 18.307 20.483
23.209 25.188 10
11 2.603 3.053
3.816 4.575 5.578
17.275 19.675 21.92
24.725 26.757 11
12 3.074 3.571
4.404 5.226 6.304
18.549 21.026 23.337
26.217 28.299 12
13 3.565 4.107
5.009 5.892 7.042
19.812 22.362 24.736
27.688 29.819 13
14 4.075 4.66 5.629
6.571 7.79 21.064
23.685 26.119 29.141
31.319 14
15 4.601 5.229
6.262 7.261 8.547
22.307 24.996 27.488
30.578 32.801 15
16 5.142 5.812
6.908 7.962 9.312
23.542 26.296 28.845
32 34.267 16
17 5.697 6.408
7.564 8.672 10.085
24.769 27.587 30.191
33.409 35.718 17
18 6.265 7.015
8.231 9.39 10.865
25.989 28.869 31.526
34.805 37.156 18
19 6.844 7.633
8.907 10.117 11.651
27.204 30.144 32.852
36.191 38.582 19
20 7.434 8.26 9.591
10.851 12.443 28.412
31.41 34.17 37.566
39.997 20
21 8.034 8.897
10.283 11.591 13.24
29.615 32.671 35.479
38.932 41.401 21
22 8.643 9.542
10.982 12.338 14.042
30.813 33.924 36.781
40.289 42.796 22
23 9.26 10.196
11.689 13.091 14.848
32.007 35.172 38.076
41.638 44.181 23
24 9.886 10.856
12.401 13.848 15.659
33.196 36.415 39.364
42.98 45.559 24
25 10.52 11.524
13.12 14.611 16.473
34.382 37.652 40.646
44.314 46.928 25
26 11.16 12.198
13.844 15.379 17.292
35.563 38.885 41.923
45.642 48.29 26
27 11.808 12.879
14.573 16.151 18.114
36.741 40.113 43.194
46.963 49.645 27
28 12.461 13.565
15.308 16.928 18.939
37.916 41.337 44.461
48.278 50.993 28
29 13.121 14.257
16.047 17.708 19.768
39.087 42.557 45.722
49.588 52.336 29
30 13.787 14.954
16.791 18.493 20.599
40.256 43.773 46.979
50.892 53.672 30
40 20.707 22.164
24.433 26.509 29.051
51.805 55.758 59.342
63.691 66.766 40
50 27.991 29.707
32.357 34.764 37.689
63.167 67.505 71.42
76.154 79.49 50
60 35.534 37.485
40.482 43.188 46.459
74.397 79.082 83.298
88.379 91.952 60
70 43.275 45.442
48.758 51.739 55.329
85.527 90.531 95.023
100.425 104.215 70
80 51.172 53.54
57.153 60.391 64.278
96.578 101.879 106.629
112.329 116.321 80
90 59.196 61.754
65.647 69.126 73.291
107.565 113.145 118.136
124.116 128.299 90
100 67.328 70.065
74.222 77.929 82.358
118.498 124.342 129.561
135.807 140.169 100
0.995 0.99
0.975 0.95 0.9 0.1
0.05 0.025 0.01
0.005
Area to the Right of the Critical
Value
Degrees of Freedom
n-1 Confidence interval or hypothesis test for a
standard deviation sigma or variance sigma superscript
2
k-1 Goodness-of-fit with k categories
(r-1)(c-1) Contingency table with r rows and c
columns
k-1 Kruskal-Wallis test with k samples
80% confidence interval for standard deviation
The critical value for chi square is obtained from chi square distribution table table, for significance level = 0.20 degree of freedom = n - 1 = 29 - 1 = 28
Left tailed critical value:
Right tailed critical value
Get Answers For Free
Most questions answered within 1 hours.