Question

Let X and Y be independent with the pdf’s f(x) and g(y). Calculate the pdf of...

Let X and Y be independent with the pdf’s f(x) and g(y). Calculate the pdf of X − Y .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y have the joint PDF (i really just need g and h if...
Let X and Y have the joint PDF (i really just need g and h if that makes it easier) f(x) = { c(y + x^2) 0 < x < 1 and 0 < y < 1 ; 0 elsewhere a) Find c such that this is a PDF. b) What is P(X ≤ .4, Y ≤ .2) ? C) Find the Marginal Distribution of X, f(x) D) Find the Marginal Distribution of Y, f(y) E) Are X and Y...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y for 0 ≤ y ≤ 1 and 1 ≤ x ≤ 2. If U = XY and V = X/Y , calculate the joint pdf of U and V , fUV (u, v).
Let X and Y have the pdf f(x, y) = 1, 0 < x < 1,...
Let X and Y have the pdf f(x, y) = 1, 0 < x < 1, 0 < y < 1, zero elsewhere. Find the cdf and pdf of the product Z = X+Y.
X and Y are jointly continuous with joint pdf f(x, y) = 2, x > 0,...
X and Y are jointly continuous with joint pdf f(x, y) = 2, x > 0, y > 0, x + y ≤ 1 and 0 otherwise. a) Find marginal pdf’s of X and of Y. b) Find covariance Cov(X,Y). c) Find correlation Corr(X,Y). What you can say about the relationship between X and Y?
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
For independent X and Y, we have probability density function for them where pdf of X...
For independent X and Y, we have probability density function for them where pdf of X is f(x) = ne^-nx and pdf of Y is f(y) = me^-my. (x and y greater than 0). Let M1=max(X,Y) and M2=min(X,Y). Find cov(M2,M1).
For independent X and Y, we have probability density function for them where pdf of X...
For independent X and Y, we have probability density function for them where pdf of X is f(x) = ne^-nx and pdf of Y is f(y) = me^-my. (x and y greater than 0). Let M1=max(X,Y) and M2=min(X,Y). Find cov(M2,M1).
For independent X and Y, we have probability density function for them where pdf of X...
For independent X and Y, we have probability density function for them where pdf of X is f(x) = ne^-nx and pdf of Y is f(y) = me^-my. (x and y greater than 0). Let M1=max(X,Y) and M2=min(X,Y). Find cov(M2,M1).
Let X and Y have the joint pdf f(x,y) = 6*(x^2)*y for 0 <= x <=...
Let X and Y have the joint pdf f(x,y) = 6*(x^2)*y for 0 <= x <= y and x + y <= 2. What is the marginal pdf of X and Y? What is P(Y < 1.1 | X = 0.6)? Are X and Y dependent random variables?
Let X and Y be random variables with joint pdf f(x, y) = 2 + x...
Let X and Y be random variables with joint pdf f(x, y) = 2 + x − y, for 0 <= x <= 1, 1 <= y <= 2. (a) Find the probability that min(X, Y ) <= 1/2. (b) Find the probability that X + √ Y >= 4/3.