Question

1. Given a P matrix for a discrete time Markov chain consisting of transient and absorbing...

1. Given a P matrix for a discrete time Markov chain consisting of transient and absorbing states, list the steps you would take to determine the probability of ending in a certain absorbing state given the current transient state.

2. For an M/M/1/GD/∞/∞ queuing system with arrival rate λ = 5 customers per hour and service rate μ = 15 customers per hour, on the average, how long (in minutes) does a customer wait in line (round off to 3 decimal digits)?

3. For an M/M/1/GD/c/∞ queuing system with arrival rate λ = 20 customers per hour, service rate μ = 10 customers per hour and a total capacity of 5 customers, what is the effective arrival rate (round off to 3 decimal digits)?

4. For an M/M/s/GD/∞/∞ queuing system with 2 servers of service rate μ = 30 customers per hour per server and arrival rate λ = 46 customers per hour, on the average, how many customers are in the system (round off to 3 decimal digits)?  

5. A local hospital award accepts an average of 1,200 patients per year. On the average, 16 beds in the hospital ward are filled. On the average, how many days does a patient stay in the hospital ward (round off to 3 decimal digits)?

NEED ANSWERS ASAP

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For an M/M/1/GD/∞/∞ queuing system with arrival rate λ = 16 customers per hour and service...
For an M/M/1/GD/∞/∞ queuing system with arrival rate λ = 16 customers per hour and service rate μ = 20 customers per hour, on the average, how long (in minutes) does a customer wait in line (round off to 3 decimal digits)?
Consider a system that can be modelled as an M/M/3 queuing system with an arrival rate...
Consider a system that can be modelled as an M/M/3 queuing system with an arrival rate of 8 parts per hour (on the average) and a processing time of 10 minutes (on the average). a.) Draw the steady state rate diagram for this system (you can stop at 5 or 6 nodes). Label the arrival and service rates on the diagram as is customary. b) Is it a problem that the arrival rate is greater than the service rate? Why...
Work all problems in terms of hours. 1.) If it takes 5 minutes to serve a...
Work all problems in terms of hours. 1.) If it takes 5 minutes to serve a customer at a fast food restaurant, the service rate is ______ . (Give the number only, don't include any words. ) 2.) Customers arrive at a candy shop every 8 minutes on average. What is the arrival rate? (Give the number only.) 3.) In a single-server queuing system, 10 customers arrive per hour, and 20 customers are served per hour. What is the arrival...
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5 hour (repair time) =2.5 hours With m = 1/ 2.5 = 0.4 hours per customers ** PLEASE SHOW HOW TO DO EQUATION ** OEI is satisfied that one service technician can handle the 10 existing customers. Use a waiting line model to determine the following information: (a) probability that no customers are in the system, (b) average number of customers in the waiting line,...
The hematology lab manager has been receiving complaints that the turnaround time for blood tests is...
The hematology lab manager has been receiving complaints that the turnaround time for blood tests is too long. Data from the past month show that the arrival rate of blood samples to one technician in the lab is five per hour and the service rate is six per hour. To answer the following questions, use queuing theory and assume that both rates are distributed exponentially and that the lab is at a steady state. 6. What is the average time...
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate...
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate of 4 cars per hour. The service rate is 5 cars per hour. Assume that arrivals follow a Poisson probability distribution and that service times follow an exponential probability distribution. A) What is the average number of cars in the system? If required, round your answer to two decimal places L = B) What is the average time that a car waits for the...
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank...
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 6 customers per hour or 0.1 customers per minute. Also assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 54 customers per hour, or 0.9 customers per minute. Determine the...
1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and...
1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the service rate of the system? 2.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the system utilization? (Show answer as a decimal.) 3.)Suppose that this system has 3 servers instead of 5. What is the probability there are no customers in the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT