Question

1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and...

1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the service rate of the system?

2.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the system utilization? (Show answer as a decimal.)

3.)Suppose that this system has 3 servers instead of 5. What is the probability there are no customers in the system? (Show as a decimal to two decimal places.)

4.) What is the symbol for the average number of customers in the waiting line? (Lq,L Wq, W)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
in an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service...
n an M/M/1 queueing system, the arrival rate is 9 customers per hour and the service rate is 14 customers per hour. What is the utilization? (Round your answer to 3 decimal places.) What is the expected number of customers in the system (L)? (Round your answer to 3 decimal places.) What is the expected waiting time in the system (W)? (Express the waiting time in hours, round your answer to 3 decimal places.) What is the expected number of...
Consider an M/M/2/3 capacitated queueing system with the arrival rate of 3 customers per hour and...
Consider an M/M/2/3 capacitated queueing system with the arrival rate of 3 customers per hour and the service rate of 2 customers per hour. a. Calculate the steady-state distribution of the number of customers in the system. b. Calculate L, Lq, Effective arrival rate, W and Wq.
Customers arrive at coffee shop at a rate of 40 per hour. There are 2 servers...
Customers arrive at coffee shop at a rate of 40 per hour. There are 2 servers available and it takes an average of 1 minute to serve each customer. Using Table 12-6, what is the probability of no customers in the system? 0.333 0.5 0.667 0
In a grocery store, there is one cashier counter. Customers arrive at the cashier counter according...
In a grocery store, there is one cashier counter. Customers arrive at the cashier counter according to a Poisson process. The arrival rate is 30 customers per hour. The service time is exponentially distributed. The mean service time is 1 minute 30 seconds. 1. What is the expected number of customers waiting in the system. 2. What is the expected waiting time.( unit in minutes) 3. What is the utilization rate (unit in %) of the cashier?
(Operations Management) A residential construction company has opened a registration office. Customers arrive at the rate...
(Operations Management) A residential construction company has opened a registration office. Customers arrive at the rate of 200 per hour (Poisson Distribution) and the cost of their waiting in the queue is estimated $100 per person per hour. The local convention bureau provides servers to register customers at the fee of $15 per person per hour. Registration process takes 1 minute (Exponential Distribution) and a single waiting line, with multiple servers is set up. a) Compute both the minimum and...
A simple queueing system has an arrival rate of 6 per hour and a service rate...
A simple queueing system has an arrival rate of 6 per hour and a service rate of 10 per hour. For this system the average time in line has been estimated to be 20 minutes. Using Little’s Law estimate the following: Average time in the queueing system Average number of customers in the queueing system Average number of customers in the queue Average number of customers in service.
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank...
1. Willow Brook National Bank operates a drive-up teller window that allows customers to complete bank transactions without getting out of their cars. On weekday mornings, arrivals to the drive-up teller window occur at random, with an arrival rate of 6 customers per hour or 0.1 customers per minute. Also assume that the service times for the drive-up teller follow an exponential probability distribution with a service rate of 54 customers per hour, or 0.9 customers per minute. Determine the...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...