Question

Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of...

Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of 1.3 and a mean diameter of 208

inches.

If 60

shafts are sampled at random from the batch, what is the probability that the mean diameter of the sample shafts would differ from the population mean by more than 0.1

inches? Round your answer to four decimal places.

Homework Answers

Answer #1
for normal distribution z score =(X-μ)/σx
here mean=       μ= 208
std deviation   =σ= 1.300
sample size       =n= 60
std error=σ=σ/√n= 0.16783

probability that the mean diameter of the sample shafts would differ from the population mean by more than 0.1 :

probability =1-P(207.9<X<208.1)=1-P((207.9-208)/0.168)<Z<(208.1-208)/0.168)=1-P(-0.6<Z<0.6)=1-(0.7257-0.2743)=0.5486
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of...
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of 1.9 and a mean diameter of 200 inches. If 78 shafts are sampled at random from the batch, what is the probability that the mean diameter of the sample shafts would differ from the population mean by greater than 0.2 inches? Round your answer to four decimal places.
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of...
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of 1.5 and a mean diameter of 205 inches. If 79 shafts are sampled at random from the batch, what is the probability that the mean diameter of the sample shafts would differ from the population mean by more than 0.3 inches?
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of...
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of 1.5 and a mean diameter of 205 inches. If 79 shafts are sampled at random from the batch, what is the probability that the mean diameter of the sample shafts would be less than 205.3 inches? Round your answer to four decimal places.
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of...
Suppose a batch of metal shafts produced in a manufacturing company have a standard deviation of 2.5 and a mean diameter of 214 inches. If 85 shafts are sampled at random from the batch, what is the probability that the mean diameter of the sample shafts would be greater than 214.2 inches? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 170 millimeters, and a standard deviation of 10 millimeters. If 299 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would differ from the population mean by greater than 0.7 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 187 millimeters, and a variance of 64 . If 416 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would differ from the population mean by less than 0.65 millimeters? Round your answer to four decimal places.
The diameters of steel shafts produced by a certain manufacturing process should have a mean diameter...
The diameters of steel shafts produced by a certain manufacturing process should have a mean diameter of 5.5 inches. The diameter is known to have a standard deviation of 0.9 inches. A random sample of 30 shafts. (a) Find a 90% confidence interval for the mean diameter to process. (b) Find a 99% confidence interval for the mean diameter to process. (c) How does the increasing and decreasing of the significance level affect the confidence interval? Why? Please explain and...
The diameter of copper shafts produced by a certain manufacturing company process should have a mean...
The diameter of copper shafts produced by a certain manufacturing company process should have a mean diameter of 0.51 mm. The diameter is known to have a standard deviation of 0.0002 mm. A random sample of 40 shafts has an average diameter of 0.509 mm. Test the hypotheses on the mean diameter using α = 0.05.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 178 millimeters, and a standard deviation of 12 millimeters. If 76 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would be less than 177.44 millimeters? Round your answer to four decimal places.
Suppose a batch of steel rods produced at a steel plant have a mean length of...
Suppose a batch of steel rods produced at a steel plant have a mean length of 176 millimeters, and a variance of 100 . If 446 rods are sampled at random from the batch, what is the probability that the mean length of the sample rods would be less than 175.35 millimeters? Round your answer to four decimal places.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT