Event B = rolling a 6
Event A = rolling die 1
Event 2 = rolling die 2
Event 3 = rolling die 3
P[ B | A ] = 1/6 ( fair die )
P[ B | 2 ] = 2/9
P[ B | 3 ] = 2/9
P[ A ] = P[ 1 ] =P[ 2 ] = 1/3
P[ B ] = P[ B | A ]*P[ A ] + P[ B | 2 ]*P[ 2 ] + P[ B | 3 ]*P[ 3 ]
P[ B ] = ( 1/6)*(1/3) + (2/9)*(1/3) + (2/9)*(1/3)
P[ B ] = 1/18 + 2/27 + 2/27
P[ B ] = 1/18 + 4/27
P[ B ] = 11/54
We need to find
P[ A | B ] = P[ B | A ]*P[ A ] / P[ B ]
P[ A | B ] = ( 1/6)*(1/3) / 11/54
P[ A | B ] = (1/18)/(11/54)
P[ A | B ] = 3/11
Get Answers For Free
Most questions answered within 1 hours.