Question

A consumer product testing organization uses a survey of readers to obtain customer satisfaction ratings for...

A consumer product testing organization uses a survey of readers to obtain customer satisfaction ratings for the nation's largest supermarkets. Each survey respondent is asked to rate a specified supermarket based on a variety of factors such as: quality of products, selection, value, checkout efficiency, service, and store layout. An overall satisfaction score summarizes the rating for each respondent with 100 meaning the respondent is completely satisfied in terms of all factors. Suppose sample data representative of independent samples of two supermarkets' customers are shown below.

Supermarket 1: n1 = 260 x1=89

Supermarket 2: n2 = 300 x2 = 88

(a) Formulate the null and alternative hypotheses to test whether there is a difference between the population mean customer satisfaction scores for the two retailers. (Let μ1 = the population mean satisfaction score for Supermarket 1's customers, and let μ2 = the population mean satisfaction score for Supermarket 2's customers. Enter != for ≠ as needed.)

H0:

Ha:

(b) Assume that experience with the satisfaction rating scale indicates that a population standard deviation of 17 is a reasonable assumption for both retailers. Conduct the hypothesis test. Calculate the test statistic. (Use μ1 − μ2. Round your answer to two decimal places.) Report the p-value. (Round your answer to four decimal places.) p-value = At a 0.05 level of significance what is your conclusion?

Reject H0. There is not sufficient evidence to conclude that the population mean satisfaction scores differ for the two retailers.

Do not reject H0. There is not sufficient evidence to conclude that the population mean satisfaction scores differ for the two retailers.

Reject H0. There is sufficient evidence to conclude that the population mean satisfaction scores differ for the two retailers.

Do not reject H0. There is sufficient evidence to conclude that the population mean satisfaction scores differ for the two retailers. (c) Which retailer, if either, appears to have the greater customer satisfaction?

Supermarket 1 Supermarket 2 neither Provide a 95% confidence interval for the difference between the population mean customer satisfaction scores for the two retailers. (Use x1 − x2. Round your answers to two decimal places.) to

Homework Answers

Answer #1

thank you

please upvote

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer product testing organization uses a survey of readers to obtain customer satisfaction ratings for...
A consumer product testing organization uses a survey of readers to obtain customer satisfaction ratings for the nation's largest supermarkets. Each survey respondent is asked to rate a specified supermarket based on a variety of factors such as: quality of products, selection, value, checkout efficiency, service, and store layout. An overall satisfaction score summarizes the rating for each respondent with 100 meaning the respondent is completely satisfied in terms of all factors. Suppose sample data representative of independent samples of...
A magazine uses a survey of readers to obtain customer satisfaction ratings for the nation's largest...
A magazine uses a survey of readers to obtain customer satisfaction ratings for the nation's largest retailers. Each survey respondent is asked to rate a specified retailer in terms of six factors: quality of products, selection, value, checkout efficiency, service, and store layout. An overall satisfaction score summarizes the rating for each respondent with 100 meaning the respondent is completely satisfied in terms of all six factors. Sample data representative of independent samples of Retailer A and Retailer B customers...
Periodically, customers of a financial services company are asked to evaluate the company's financial consultants and...
Periodically, customers of a financial services company are asked to evaluate the company's financial consultants and services. Higher ratings on the client satisfaction survey indicate better service, with 7 the maximum service rating. Independent samples of service ratings for two financial consultants are summarized here. Consultant A has 10 years of experience, whereas consultant B has 1 year of experience. Use α = 0.05 and test to see whether the consultant with more experience has the higher population mean service...
You may need to use the appropriate technology to answer this question. Periodically, customers of a...
You may need to use the appropriate technology to answer this question. Periodically, customers of a financial services company are asked to evaluate the company's financial consultants and services. Higher ratings on the client satisfaction survey indicate better service, with 7 the maximum service rating. Independent samples of service ratings for two financial consultants are summarized here. Consultant A has 10 years of experience, whereas consultant B has 1 year of experience. Use α = 0.05 and test to see...
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 >...
Consider the following hypothesis test. H0: μ1 − μ2 ≤ 0 Ha: μ1 − μ2 > 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 25.7 x2 = 22.8 σ1 = 5.7 σ2 = 6 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are for two independent samples taken from the two populations. Sample 1 Sample 2 n1 = 80 n2 = 70 x1 = 104 x2 = 106 σ1 = 8.4 σ2 = 7.5 (a) What is the value of the test statistic? (Round your answer to two decimal places.) (b) What is the p-value? (Round your answer to four decimal places.)...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.7 s2 = 8.2 (a) What is the value of the test statistic? (Use x1 − x2.  Round your answer to three decimal places.) (b) What is the degrees of...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.6 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
7) Answer the questions below for hypothesis A and B. 1.What is the test statistic? ​(Round...
7) Answer the questions below for hypothesis A and B. 1.What is the test statistic? ​(Round to two decimal places as​ needed.) 2. What are the critical values? ​(Round to three decimal places as​ needed.) 3. Since the test statistic (falls/does not fall) in the rejection region, (reject/do not reject) Ho. There is (sufficient/ not sufficient) evidence to conclude that the mean of population 1 is different from population 2. 4.What is the P value? 5. Since the p-value is...
You may need to use the appropriate technology to answer this question. Consider the following hypothesis...
You may need to use the appropriate technology to answer this question. Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.2 s2 = 8.6 (a) What is the value of the test statistic? (Use x1 − x2....