Question

Show that sample mean is an unbiased estimator of population mean.

Show that sample mean is an unbiased estimator of population mean.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We have shown that the sample mean estimator is both unbiased and consistent for the population...
We have shown that the sample mean estimator is both unbiased and consistent for the population mean. a) Give an example of an estimator for the population mean that is unbiased but not consistent b) Give an example of an estimator for population mean that is consistent but not unbiased.
To show that an estimator can be consistent without being unbiased or even asymptotically unbiased, consider...
To show that an estimator can be consistent without being unbiased or even asymptotically unbiased, consider the following estimation procedure: To estimate the mean of a population with the finite variance σ2, we first take a random sample of size n. Then we randomly draw one of n slips of paper numbered from 1 through n, and if the number we draw is 2, 3,..., or n, we use as our estimator the mean of the random sample; otherwise, we...
1. The sample variance formula makes it an unbiased estimator. True or False?
1. The sample variance formula makes it an unbiased estimator. True or False?
1.The sample mean is an unbiased estimator for the population mean. This means: The sample mean...
1.The sample mean is an unbiased estimator for the population mean. This means: The sample mean always equals the population mean. The average sample mean, over all possible samples, equals the population mean. The sample mean will only vary a little from the population mean. The sample mean has a normal distribution. 2.Which of the following statements is CORRECTabout the sampling distribution of the sample mean: The standard error of the sample mean will decrease as the sample size increases....
which of the following is an unbiased point estimator for the expected value of any sampled...
which of the following is an unbiased point estimator for the expected value of any sampled random variables? a) the sample varlance b) the p-value c) the sample mean d) the margin of error
a. If the OLS estimator is unbiased for the true population parameter, is the OLS estimate...
a. If the OLS estimator is unbiased for the true population parameter, is the OLS estimate necessarily equal to the population parameter? Explain your answer in detail. b. Suppose that the true population regression (data generating process) is given by Y i = B 0 + B 1 X i +u i . Further suppose that the population covariance between X i and u i is equal to some positive value A , rather than zero: COV(X i ,u i...
Q17 What is meant when a sample statistic is said to be an unbiased estimator? [2...
Q17 What is meant when a sample statistic is said to be an unbiased estimator? [2 Marks] DO NOT WRITE THE ANSWER - USE WORD FORMAT. NO PLAGIARISM PLEASE
a. If ? ̅1 is the mean of a random sample of size n from a...
a. If ? ̅1 is the mean of a random sample of size n from a normal population with mean ? and variance ?1 2 and ? ̅2 is the mean of a random sample of size n from a normal population with mean ? and variance ?2 2, and the two samples are independent, show that ?? ̅1 + (1 − ?)? ̅2 where 0 ≤ ? ≤ 1 is an unbiased estimator of ?. b. Find the value...
Suppose X1 is from a population with mean µ and variance 1 and X2 is from...
Suppose X1 is from a population with mean µ and variance 1 and X2 is from a population with mean µ and variance 4 (X1, X2 are independent). Construct an estimator of ? as ?̂=??1+(1−?)?2. Show that ?̂ is unbiased for ?. Find the most efficient estimator in this class, that is, find the value of a such that the estimator has the smallest variance.
Suppose X1 is from a population with mean µ and variance 1 and X2 is from...
Suppose X1 is from a population with mean µ and variance 1 and X2 is from a population with mean µ and variance 4 (X1, X2 are independent). Construct an estimator of ? as ?̂=??1+(1−?)?2. Show that ?̂ is unbiased for ?. Find the most efficient estimator in this class, that is, find the value of a such that the estimator has the smallest variance.