Question

In a volleyball game between two teams, A and B, the game will be over if...

In a volleyball game between two teams, A and B, the game will be over if a team wins two out of three sets. In any set, team A has a 60 percent chance of winning the sets.

Model this game with Markov chain. Hint: Use (WA, WB) as the states where WA is the number of sets A wins and WB is the number of sets B wins. For example state (1,0) means A won 1 set and B won 0 set. Of course, the game starts with a state of (0,0).

Identify each state of this markov chain.

Compute the expected number of sets before team A can win the game.

Compute the expected number of sets before team B can win the game.

Compute the probability that team A can win the game.

Compute the probability that team B can win the game.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A volleyball team is entered in a tournament. Rounds of the tournament are played as best...
A volleyball team is entered in a tournament. Rounds of the tournament are played as best of three; that is, each team will play the opponent in that round until one of the teams has won two games. Suppose that teams are matched up evenly in the first round of the tournament, such that either team has an equal chance to win. For subsequent games, if a team had just won they will be more confident and more likely to...
Two teams play a series of games until one of the teams wins n games. In...
Two teams play a series of games until one of the teams wins n games. In every game, both teams have equal chances of winning and there are no draws. Compute the expected number of the games played when (a) n = 2; (b) n = 3. (To keep track of what you are doing, it can be easier to use different letters for the probabilities of win for the two teams).
Two teams, A and B, are playing a best of 5 game series. (The series is...
Two teams, A and B, are playing a best of 5 game series. (The series is over once one team wins 3 games). The probability of A winning any given game is 0.6. Draw the tree diagram for all possible outcomes of the series.
Two teams A and B play a series of at most five games. The first team...
Two teams A and B play a series of at most five games. The first team to win these games win the series. Assume that the outcomes of the games are independent. Let p be the probability for team A to win each game. Let x be the number of games needed for A to win. Let the event Ak ={A wins on the kth trial}, k=3,4,5. (a) What is P(A wins)? Express the probability with p and k. Show...
Suppose that two teams are playing a series of games, each team independently wins each game...
Suppose that two teams are playing a series of games, each team independently wins each game with 1/2 probability. The final winner of the series is the first team to win four games. Let X be the number of games that the two teams have played. Find the distribution of X.
Suppose that two teams (for fun, let’s call them the Domestic Shorthairs and Cache Cows) play...
Suppose that two teams (for fun, let’s call them the Domestic Shorthairs and Cache Cows) play a series of games to determine a winner. In a best-of-three series, the games end as soon as one team has won two games. In a best-of-five series, the games end as soon as one team has won three games, and so on. Assume that the Domestic Shorthair’s probability of winning any one game is p, where .5 < p < 1. (Notice that...
Suppose the probability that a basketball team wins each game in a tournament is 60 percent....
Suppose the probability that a basketball team wins each game in a tournament is 60 percent. This probability is constant with each game , and each win/loss is independent. The team plays in the tournament until it loses. a)Define the random variable and its distribution and find the expected number of games that the team plays. b)Find the probability that the team plays in at least 4 games. c)Find the probability that the team wins the tournament if the tournament...
Suppose that two teams, A and B play a series of games that ends when one...
Suppose that two teams, A and B play a series of games that ends when one of them has won 3 games. Suppose that games are played independently and both teams have equal chances of winning in each game. Let X be the number of games played. (i) Find the probability mass function of X. (ii) Find the expected value of X
#5. Suppose that two teams (A and B) play a series of games that ends when...
#5. Suppose that two teams (A and B) play a series of games that ends when one of them has won 3 games. Suppose that each game played is, independently, won by team A with probability p. Find the probability distribution of number of games.
Two tennis professionals, A and B, are scheduled to play a match; the winner is the...
Two tennis professionals, A and B, are scheduled to play a match; the winner is the first player to win three sets in a total that cannot exceed five sets. The event that A wins any one set is P(A) = 0.6, and is independent of the event that A wins any other set. Let x equal the total number of sets in the match; that is, x = 3, 4, or 5. (a) Find p(x). x 3 4 5...