Question

#5. Suppose that two teams (A and B) play a series of games that ends when...

#5. Suppose that two teams (A and B) play a series of games that ends when one of them has won 3 games. Suppose that each game played is, independently, won by team A with probability p. Find the probability distribution of number of games.

Homework Answers

Answer #1

Let probability that team A win is p and probability that team B win is 1-p.

Let A shows the event team A win and B shows the event that team B win.

Let X is a random variable shows the number of games. Here X can take values 3, 4, and 5.

When X=3, then two possible outcomes are

AAA, BBB

So the probability for X=3 will be

----------------------

When X=4, then one team win one game and other team three games. The possible outcomes are

BAAA, ABAA, AABA, ABBB, BABB, BBAB

So the probability for X=4 will be

-------------------

When X=5, then one team win two games out of first four games. Other team win two games out of first two games and must win last game.

For team A: Number of ways selecting 2 games out of 4 is C(4,2) = 6

Likewise for team B number of ways selecting 2 games out of 4 is C(4,2) = 6

So the probability for X=5 will be

Hence, the probability distribution of number of games is:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that two teams play a series of games that ends when one of them has...
Suppose that two teams play a series of games that ends when one of them has won 3 games. Suppose that each game played is, independently, won by team A with probability   7/10 . Let X  be the number of games that are played. (a) Find P(X  =  5) (b) Find the expected number of games played.
Suppose that two teams play a series of games that ends when one of them has...
Suppose that two teams play a series of games that ends when one of them has won 3 games. Suppose that each game played is, independently, won by team A with probability   1/ 2 . Let X  be the number of games that are played. (a) Find P(X  =  4) (b) Find the expected number of games played.
Suppose that two teams, A and B play a series of games that ends when one...
Suppose that two teams, A and B play a series of games that ends when one of them has won 3 games. Suppose that games are played independently and both teams have equal chances of winning in each game. Let X be the number of games played. (i) Find the probability mass function of X. (ii) Find the expected value of X
Two teams A and B play a series of games until one team wins four games....
Two teams A and B play a series of games until one team wins four games. We assume that the games are played independently and that the probability that A wins any game is p and B wins (1-p). What is the probability that the series ends after... a) 5 games b) 6 games c) 7 games d) n games
Suppose that two teams are playing a series of games, each team independently wins each game...
Suppose that two teams are playing a series of games, each team independently wins each game with 1/2 probability. The final winner of the series is the first team to win four games. Let X be the number of games that the two teams have played. Find the distribution of X.
Two teams play a series of games until one of the teams wins n games. In...
Two teams play a series of games until one of the teams wins n games. In every game, both teams have equal chances of winning and there are no draws. Compute the expected number of the games played when (a) n = 2; (b) n = 3. (To keep track of what you are doing, it can be easier to use different letters for the probabilities of win for the two teams).
Two teams A and B play a series of at most five games. The first team...
Two teams A and B play a series of at most five games. The first team to win these games win the series. Assume that the outcomes of the games are independent. Let p be the probability for team A to win each game. Let x be the number of games needed for A to win. Let the event Ak ={A wins on the kth trial}, k=3,4,5. (a) What is P(A wins)? Express the probability with p and k. Show...
Suppose that two teams (for fun, let’s call them the Domestic Shorthairs and Cache Cows) play...
Suppose that two teams (for fun, let’s call them the Domestic Shorthairs and Cache Cows) play a series of games to determine a winner. In a best-of-three series, the games end as soon as one team has won two games. In a best-of-five series, the games end as soon as one team has won three games, and so on. Assume that the Domestic Shorthair’s probability of winning any one game is p, where .5 < p < 1. (Notice that...
In the baseball World Series, two teams play games until one team has won four games;...
In the baseball World Series, two teams play games until one team has won four games; thus the total length of the series must be between 4 and 7 games. What is the probability of having a World Series with a length of 4 games under the assumption that the games are independent events with each team equally likely to win?
Two teams, A and B, are playing a best of 5 game series. (The series is...
Two teams, A and B, are playing a best of 5 game series. (The series is over once one team wins 3 games). The probability of A winning any given game is 0.6. Draw the tree diagram for all possible outcomes of the series.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT