Question

Two independent events A and B are given, and P(Bc|A ∪ B) = 1/3, P (A|B)...

Two independent events A and B are given, and P(Bc|A ∪ B) = 1/3, P (A|B) = 1/2. What is P (Bc)?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3) Given the events A and B, and P (A) = 0.3, P (B) = .5...
3) Given the events A and B, and P (A) = 0.3, P (B) = .5 and P (A and B) = .1 Determine: a) P (A∪B) b) P (A∪Bc) c) P (A / B) Hint: make the Venn diagram 4) Given events A and B, and P (A) = 0.3, P (B) = .5 If the events are independent, determine: a) P (A∪B) b) P (A∩Bc) c) P ((A∩B) c) 5) If the events are mutually exclusive, determine: a)...
For two events A and B show that P (A∩B) ≥ P (A)+P (B)−1. (Hint: Apply...
For two events A and B show that P (A∩B) ≥ P (A)+P (B)−1. (Hint: Apply de Morgan’s law and then the Bonferroni inequality). Derive below Results 1 to 4 from Axioms 1 to 3 given in Section 2.1.2 in the textbook. Result 1: P (Ac) = 1 − P(A) Result 2 : For any two events A and B, P (A∪B) = P (A)+P (B)−P (A∩B) Result 3: For any two events A and B, P(A) = P(A ∩...
Please type if possible. 1. For two events A and B show that P(A∩B) ≥ P(A)+P(B)−1....
Please type if possible. 1. For two events A and B show that P(A∩B) ≥ P(A)+P(B)−1. (Hint: Apply de Morgan’s law and then the Bonferroni inequality). 2. Derive below Results 1 to 4 from Axioms 1 to 3 given in Section 2.1.2 in the textbook. Result 1: P(Ac ) = 1 − P(A) Result 2 : For any two events A and B, P(A∪B) = P(A)+P(B)−P(A∩B) Result 3: For any two events A and B, P(A) = P(A ∩ B)...
Given P(A) = 0.7 and P(B) = 0.4 1) If A and B are independent events,...
Given P(A) = 0.7 and P(B) = 0.4 1) If A and B are independent events, compute P(A and B) - please center your answers in two decimal places 2) If P(A|B) = 0.1, compute P(A and B) ( THE ANSWERS ARE NOT 0.28 & 0.04 )
1. A and B are independent events, and P(A) = 0.5 and P(B) = 0.8. Find...
1. A and B are independent events, and P(A) = 0.5 and P(B) = 0.8. Find P(A and B) 2. Suppose that P(A) = 0.3, P(B) = 0.4, and P(A and B) = 0.12. a. What is P(A|B)? b. What is P(B|A)? c. Are A and B independent 3) Describe in your own words why the following statements are correct. a. Two events cannot be independent if they are already known to be mutually exclusive b. Two events cannot be...
Prove (a). Events A and B are independent if and only if Ac and Bc are...
Prove (a). Events A and B are independent if and only if Ac and Bc are independent. (b). If events A and B both have a positive probability and are disjoint, then they cannot be independent.
Let A and B be two independent events in the sample space S. Which of the...
Let A and B be two independent events in the sample space S. Which of the following statements is/are true? Circle all that apply. [3 marks] (a) The events A and Bc are independent. (b) The events Ac and Bc are independent. (c) The events (A \ B) and (Ac \ Bc) are independent. (d) None of the above.
If A and B are independent events , prove that : 1\ A and B are...
If A and B are independent events , prove that : 1\ A and B are independent 2\ Ac and B are independent   4\Ac and Bc are independent
1. Answer the following a. If A and B are independent events, then P(A and B)...
1. Answer the following a. If A and B are independent events, then P(A and B) = P(A)P(B). True or false? b. Let A, B and C be independent events with P(A) = 0.7, P(B) = 0.8, P(CC) = 0.5. Find P(A and B and C) c. Compute the mean and standard deviation of the random variable with the given discrete probability distribution: X     P(X) -3     0.10 0      0.17 1      0.56 3     0.17
Suppose events A, B, and C are MUTUALLY INDEPENDENT and P(a) = 1/4, P(B) = 1/3,...
Suppose events A, B, and C are MUTUALLY INDEPENDENT and P(a) = 1/4, P(B) = 1/3, and P(C) =1/2 and N denotes the total number of events among A, B, C, that occur (a) Draw a venn diagram (b) What is the E(N) (c) What is E(N^2) (d) What is Cov(Ia,N) (e) Find P(N <= 2 | C) Thank you!