Question

We have an illness, where 2% of the polulation is infected, and we have a test...

We have an illness, where 2% of the polulation is infected, and we have a test with sensitivity 94% and specificity 98%.

A="infected" and B="tests positive"

Question:

20 people gets tested, and all tests negative. What is the probability that atleast one of these 20 really are infected?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We have an illness, where 2% of the polulation is infected, and we have a test...
We have an illness, where 2% of the polulation is infected, and we have a test with sensitivity 94% and specificity 98%. A="infected" and B="tests positive" The question: What is the probability that a test-subject tests positive, even when not infected? And how high does the specificity need to be such that the probability is below 10%
We have the following statements: 1 percent of the population is infected by a disease. We...
We have the following statements: 1 percent of the population is infected by a disease. We have a test, a, that has a sensitivity of 90% and a specificity of 95%. Sensitivity means that a person will test positive IF they are in fact infected. Specificity means that a person will test negative IF they are in fact not infected. The question is: What is the probability that a random tested person gets a positiv result? And what is the...
We have a test with sensitivity 95% and specificity 98%. We assume that 2% of a...
We have a test with sensitivity 95% and specificity 98%. We assume that 2% of a population is infected with a virus. The question is: What is the probability of a person beeing infected, even though they test negative?
The prevalence of a disease D among the population is 3%. There is a diagnostic test...
The prevalence of a disease D among the population is 3%. There is a diagnostic test for disease D. The sensitivity of this test is 99%, this means that the test is positive given that the person has the disease. The specificity of this test is 98%, this means that the test is negative given that the person does not have the disease. a) Given that a person tests positive, what is the probability that the person does not have...
Suppose that a screening test for breast cancer has 95% sensitivity and 90% specificity. Assume 1%...
Suppose that a screening test for breast cancer has 95% sensitivity and 90% specificity. Assume 1% of the population being screened truly has breast cancer. a. If you really do have breast cancer, what is the probability that the test says you do? b. If you really do not have breast cancer, what is the probability that the test says you do? c. The screening test is applied to a total of 15 people; 5 who really do have cancer...
Suppose that a medical test run on 372 people resulted in 38 positive results. Of those,...
Suppose that a medical test run on 372 people resulted in 38 positive results. Of those, 22 people were eventually confirmed to have the illness. Among the people who tested negative, 3 were eventually diagnosed through other means, and the rest were healthy. Find the sensitivity of the test, the specificity of the test, and the positive and negative predictive values. The positive predictive value is the probability that a person is ill given that they tested positive, and the...
A test for a particular illness that affects 3% of the general population has the following...
A test for a particular illness that affects 3% of the general population has the following properties: The test will show a positive in 97% of cases where the patient has the illness and a negative in 3% of such cases. The test will show a false positive in 6% of patients who do not have the illness and a negative result for 94% of patients who do not have the illness. Note that a positive result means that the...
3. A diagnostic test has 95% sensitivity (the probability a person with the condition tests positive...
3. A diagnostic test has 95% sensitivity (the probability a person with the condition tests positive = 0.95) and 95% specificity (the probability a person without the condition tests negative = 0.95). In a population of people given the test, 1% of the people have the condition (probability a person has the condition = 0.01). (a) What proportion of the people will test positive? (b) Given a person has tested positive, what is the probability he/she has the condition?
We know that the probability of a person getting infected with COVID-19 (based on global data)...
We know that the probability of a person getting infected with COVID-19 (based on global data) is 30% and the probability of dying because of COVID-19 (gobally) is 7.012% After doing tests to 3,500 people in Florida we have found that 86% have not tested positive for COVID-19 and that 4.9% of the ones that tested positive died. 1. Calculate the probability of a randomly chosen person in Florida to NOT to get infected with COVID-19 2. Calculate the probability...
The RDT SARS-COV-2 test has 93.8 sensitivity (the probability of a true positive result) and 95.6%...
The RDT SARS-COV-2 test has 93.8 sensitivity (the probability of a true positive result) and 95.6% specificity (the probability of a true negative result) . Suppose that 10% of population is infected with SARS-COV-2. If a randomly selected individual tests positive, what is the probability he or she is infected?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT