Question

Suppose that a measurement has mean µ and variance σ^2 = 25. Let X be the...

Suppose that a measurement has mean µ and variance σ^2 = 25. Let X be the average of n such independent measurements. How large should n be so that P |X − µ| < 1 = 0.95?

Homework Answers

Answer #1

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a measurement has mean µ and variance σ^2 = 25. Let X be the average...
Consider a measurement has mean µ and variance σ^2 = 25. Let X be the average of n such independent measurements. How large should n be so that P |X − µ| < 1 = 0.95
Let X ∼ N (µ, σ^2). Prove that P (|X − µ| > kσ) does not...
Let X ∼ N (µ, σ^2). Prove that P (|X − µ| > kσ) does not depend on µ or σ. Please write your answer as clearly as you can, appreciate it!
Consider a large population which has population mean µ, and population variance σ 2 . We...
Consider a large population which has population mean µ, and population variance σ 2 . We take a sample of size n = 3 from this population, thinking of the samples as realizations of the RVs X1, X2, and X3, where the Xi can be considered iid. We are interested in estimating µ. (a) Consider the estimator ˆµ1 = X1 + X2 − X3. Is this estimator unbiased for µ? Explain your answer. (b) Find the variance of ˆµ1. (c)...
Suppose that we use x to estimate the mean of x, when E[x] = µ, Var[x]...
Suppose that we use x to estimate the mean of x, when E[x] = µ, Var[x] = σ 2 . Further suppose that both µ and σ 2 have finite values. As the sample size n gets larger, the variance of x gets closer to _______ ?
Suppose the following hypotheses: H0: µ = 2 vs Ha: µ ≠ 2, and σ =...
Suppose the following hypotheses: H0: µ = 2 vs Ha: µ ≠ 2, and σ = 20, sample mean = 12, and use alpha = 0.05 a.     If n = 10 what is p-value? b.     If n = 15, what is p-value? c.     If n = 20 what is p-value? d.     Summarize your findings from above. Please show your work and thank you SO much in advance! You are helping a struggling stats student SO much!
2. Let X be a Normal random variable with µ = 11 and σ 2 =...
2. Let X be a Normal random variable with µ = 11 and σ 2 = 49. You may refer to the tables at the end of our textbook. (a) Calculate P(X2 > 100). (b) Calculate the hazard rate function at 18, λ(18) and at 25, λ(25).
Let X be a random variable with mean μ and variance σ^2. Define Y=(X-μ)/σ. What is...
Let X be a random variable with mean μ and variance σ^2. Define Y=(X-μ)/σ. What is the variance of Y?
Let X1, X2 be two normal random variables each with population mean µ and population variance...
Let X1, X2 be two normal random variables each with population mean µ and population variance σ2. Let σ12 denote the covariance between X1 and X2 and let ¯ X denote the sample mean of X1 and X2. (a) List the condition that needs to be satisfied in order for ¯ X to be an unbiased estimate of µ. (b) [3] As carefully as you can, without skipping steps, show that both X1 and ¯ X are unbiased estimators of...
Let X be normally distributed with mean µ = 250 and standard deviation σ = 80....
Let X be normally distributed with mean µ = 250 and standard deviation σ = 80. Find the value x such that P(X ≤ x) = 0.9332. a. 120 b. 1.50 c. 374 d. 370
Suppose X1 is from a population with mean µ and variance 1 and X2 is from...
Suppose X1 is from a population with mean µ and variance 1 and X2 is from a population with mean µ and variance 4 (X1, X2 are independent). Construct an estimator of ? as ?̂=??1+(1−?)?2. Show that ?̂ is unbiased for ?. Find the most efficient estimator in this class, that is, find the value of a such that the estimator has the smallest variance.