Question

Let X be normally distributed with mean µ = 250 and standard deviation σ = 80....

Let X be normally distributed with mean µ = 250 and standard deviation σ = 80. Find the value x such that P(X ≤ x) = 0.9332.

a. 120

b. 1.50

c. 374

d. 370

Homework Answers

Answer #1

Given that, X be normally distributed with mean (μ) = 250 and standard deviation (σ) = 80

We want to find the value of x such that, P(X ≤ x) = 0.9332

First we find, z-score such that, P(Z ≤ z) = 0.9332

Using standard normal z-table we get, z-score corresponding are under the normal curve of 0.9332 is, z = 1.50

we know,

Z = (x - μ) / σ

=> x = zσ + μ

=> x = (1.50 * 80) + 250

=> x = 120 + 250

=> x = 370

=> P(X ≤ 370) = 0.9332

Therefore, required value of x is 370.

Answer : d) 370

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be normally distributed with mean μ = 103 and standard deviation σ = 35....
Let X be normally distributed with mean μ = 103 and standard deviation σ = 35. [You may find it useful to reference the z table.] c. Find x such that P(X ≤ x) = 0.360. (Round "z" value and final answer to 3 decimal places.) d. Find x such that P(X > x) = 0.790. (Round "z" value and final answer to 3 decimal places.)
Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ....
Create a Normally (Gaussian) distributed random variable1 X with a mean µ and standard deviation σ. • [20] Create normally distributed 50 samples (Y) with µ and σ, and plot the samples. • [20] Create normally distributed 5000 samples (X) with µ and σ, and (over) plot the samples. • [20] Plot the histogram of random variable X and Y. Do not forget to normalize the histogram. • [35] Plot the Gaussian PDF and its CDF function over the histogram...
Let X be normally distributed with mean μ = 102 and standard deviation σ = 34....
Let X be normally distributed with mean μ = 102 and standard deviation σ = 34. [You may find it useful to reference the z table.] a. Find P(X ≤ 100). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(95 ≤ X ≤ 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X ≤ x) = 0.360. (Round "z" value and...
Let X be normally distributed with mean μ = 126 and standard deviation σ = 22....
Let X be normally distributed with mean μ = 126 and standard deviation σ = 22. [You may find it useful to reference the z table.] a. Find P(X ≤ 100). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(95 ≤ X ≤ 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X ≤ x) = 0.410. (Round "z" value and...
Let X be normally distributed with mean μ = 103 and standard deviation σ = 35....
Let X be normally distributed with mean μ = 103 and standard deviation σ = 35. [You may find it useful to reference the z table a. Find P(X ≤ 100). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(95 ≤ X ≤ 110). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X ≤ x) = 0.360. (Round "z" value and...
Let X be normally distributed with mean μ = 12 and standard deviation σ = 6....
Let X be normally distributed with mean μ = 12 and standard deviation σ = 6. [You may find it useful to reference the z table.] a. Find P(X ≤ 0). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 3). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(6 ≤ X ≤ 12). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 10 and standard deviation σ = 6....
Let X be normally distributed with mean μ = 10 and standard deviation σ = 6. [You may find it useful to reference the z table.] a. Find P(X ≤ 0). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 2). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(4 ≤ X ≤ 10). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 17 and standard deviation σ = 8....
Let X be normally distributed with mean μ = 17 and standard deviation σ = 8. [You may find it useful to reference the z table.] a. Find P(X ≤ 1). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(X > 5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find P(7 ≤ X ≤ 15). (Round "z" value to 2 decimal places and final...
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 2....
Let X be normally distributed with mean μ = 4.1 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Find P(X > 6.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(5.5 ≤ X ≤ 7.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X > x) = 0.0594. (Round "z" value and...
Let X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8....
Let X be normally distributed with mean μ = 3.3 and standard deviation σ = 1.8. [You may find it useful to reference the z table.] a. Find P(X > 6.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) b. Find P(5.5 ≤ X ≤ 7.5). (Round "z" value to 2 decimal places and final answer to 4 decimal places.) c. Find x such that P(X > x) = 0.0668. (Round "z" value and...