Question

Solve the following problem using dual simplex method: Min Z = 800X1 + 900X2 + 180X3,...

Solve the following problem using dual simplex method: Min Z = 800X1 + 900X2 + 180X3, s.t. 4X1 + 2X2 + X3 > 6, X1 + 3X3 > 5: x1, x2 , x3>0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3...
Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3    2x1-x2+3x3>=4    x1,x2,x3>=0
Solve the following linear program using the simplex method. If the problem is two dimensional, graph...
Solve the following linear program using the simplex method. If the problem is two dimensional, graph the feasible region, and outline the progress of the algorithm. Minimize Z = 3X1 – 2X2 – X3 Subject to 4X1 + 5X2 – 2X3 ≤ 22                     X1 – 2X2 + X3 ≤ 30                     X1, X2, X3 ≥ 0
Solve the following LP model using the dual simplex method. Use the format of the tabular...
Solve the following LP model using the dual simplex method. Use the format of the tabular form of the simplex without converting the problem into a maximization  problem.                                                 Minimize -2x1 – x2                                                 Subject to                                                                 x1+ x2+ x3 = 2                                                                 x1 + x4 = 1                                                                 x1, x2, x3, x4 ³ 0
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
solve the linear programming problem below using the simplex method. show all work of simplex method,...
solve the linear programming problem below using the simplex method. show all work of simplex method, including initial simplex tableau. Identify pivot column/row and row operations performed to pivot. Maximize z= 2x1+5x2 subject to 5x1+x2<=30 5x1+2x2<=50 x1+x2<=40 x1, x2 >=0
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual...
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual model b.) Given the information that the optimal basic variables are X1 and X3, determine the associated optimal dual solution.
Solve the following linear program using the simplex method: MAX 5X1 + 5X2 + 24X3 s.t....
Solve the following linear program using the simplex method: MAX 5X1 + 5X2 + 24X3 s.t. 15X1 + 4X2 + 12X3 <= 2800 15X1 + 8X2 <= 6000 X1 + 8X3 <= 1200 X1, X2, X3 >= 0
Consider the following linear programming optimization problem: min z = x1 - x2 + x3 x1...
Consider the following linear programming optimization problem: min z = x1 - x2 + x3 x1 + 2x2 - x3 ≤ 3 - x1 + x2 + x3 ≥ 2 x1 - x2 = 10 x1 ≥ 0, x2 ≥ 0 Convert the problem into a standard maximum problem and then write its dual form. Please write the answer clearly and legibly
Solve the linear programs using the simplex tableau. Max               Z = -6X1 - 14X2 - 13X3...
Solve the linear programs using the simplex tableau. Max               Z = -6X1 - 14X2 - 13X3 Subject to      X1 + 4X2 + 2X3 ≤ 48                       X1 + 2X2 + 4X3 ≤ 60                       X1, X2, X3 ≥ 0
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1...
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1 - x2 + 3x3 ≤   4             2x1 + x2           ≤ 10             x1 - x2 -    x3 ≤   7 and       x1 ≥ 0,   x2 ≥ 0,    x3 ≥ 0. Use Excel Solver to solve this problem. Write out the augmented form of this problem by introducing slack variables. Work through the simplex method step by step in tabular form to solve the problem.