Question

Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3...

Solve the LPP below by making use of the dual simplex method.

min z=2x1+3x2+4x3

st: x1+2x2+x3>=3

   2x1-x2+3x3>=4

   x1,x2,x3>=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the following problem using dual simplex method: Min Z = 800X1 + 900X2 + 180X3,...
Solve the following problem using dual simplex method: Min Z = 800X1 + 900X2 + 180X3, s.t. 4X1 + 2X2 + X3 > 6, X1 + 3X3 > 5: x1, x2 , x3>0
Max Z   = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 ≤ 8 2x2...
Max Z   = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 ≤ 8 2x2 + 5x3 ≤ 12 3x1 + x2 + 4x3   ≤15 and x1,x2,x3≥0; Verify that your primal and dual solutions are indeed optimal using the Complementary Slackness theorem.
Duality Theory: Consider the following LP: max 2x1+2x2+4x3 x1−2x2+2x3≤−1 3x1−2x2+4x3≤−3 x1,x2,x3≤0 Formulate a dual of this...
Duality Theory: Consider the following LP: max 2x1+2x2+4x3 x1−2x2+2x3≤−1 3x1−2x2+4x3≤−3 x1,x2,x3≤0 Formulate a dual of this linear program. Select all the correct objective function and constraints 1. min −y1−3y2 2. min −y1−3y2 3. y1+3y2≤2 4. −2y1−2y2≤2 5. 2y1+4y2≤4 6. y1,y2≤0
Consider the following linear program Max 5x1+5x2+3x3 St x1+3x2+x3<=3 -x1+ 3x3<=2 2x1-x2 +2x3<=4 2x1+3x2-x3<=2 xi>=0 for...
Consider the following linear program Max 5x1+5x2+3x3 St x1+3x2+x3<=3 -x1+ 3x3<=2 2x1-x2 +2x3<=4 2x1+3x2-x3<=2 xi>=0 for i=1,2,3 Suppose that while solving this problem with Simplex method, you arrive at the following table: z x1 x2 x3 x4 x5 x6 x7 rhs Row0 1 0 -29/6 0 0 0 11/6 2/3 26/3 Row1 0 0 -4/3 1 0 0 1/3 -1/3 2/3 Row2 0 1 5/6 0 0 0 1/6 1/3 4/3 Row3 0 0 7/2 0 1 0 -1/2 0...
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual...
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual model b.) Given the information that the optimal basic variables are X1 and X3, determine the associated optimal dual solution.
max Z = 5x1+3x2+x3 s.t : 2x1+x2+x3 < 6 x1+2x2+x3 < 7 x1, x2, x3 >...
max Z = 5x1+3x2+x3 s.t : 2x1+x2+x3 < 6 x1+2x2+x3 < 7 x1, x2, x3 > 0 Solve the problem. What is the optimal value of the objective function (OF)? Decision variables? Solve the problem. What is the optimal value of the objective function (OF)? Decision variables? (20 points)
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1...
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1 - x2 + 3x3 ≤   4             2x1 + x2           ≤ 10             x1 - x2 -    x3 ≤   7 and       x1 ≥ 0,   x2 ≥ 0,    x3 ≥ 0. Use Excel Solver to solve this problem. Write out the augmented form of this problem by introducing slack variables. Work through the simplex method step by step in tabular form to solve the problem.
Solve the following LP model using the dual simplex method. Use the format of the tabular...
Solve the following LP model using the dual simplex method. Use the format of the tabular form of the simplex without converting the problem into a maximization  problem.                                                 Minimize -2x1 – x2                                                 Subject to                                                                 x1+ x2+ x3 = 2                                                                 x1 + x4 = 1                                                                 x1, x2, x3, x4 ³ 0
Solve the 3x3 system. x1-x2+x3=3 -2x1+3x2+2x3=7 3x1-3x2+2x3=6
Solve the 3x3 system. x1-x2+x3=3 -2x1+3x2+2x3=7 3x1-3x2+2x3=6
minimize F=5x1 - 3x2 - 8x3    subject to (2x1 + 5x2 - x3 ≤1) (-2x1...
minimize F=5x1 - 3x2 - 8x3    subject to (2x1 + 5x2 - x3 ≤1) (-2x1 - 12x2 + 3x3 ≤9) (-3x1 - 8x2 + 2x3 ≤4) x1,x2,x3≥0 solve implex method pls.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT