Question

Let n1 = 36, n2 = 41 , ̄x1 = 11.6, ̄x2 = 10.4, s1 =...

  1. Let n1 = 36, n2 = 41 , ̄x1 = 11.6, ̄x2 = 10.4, s1 = 1.8 and s2 = 2.6. 2 At the α =.05 significance level, do the populations have equal means? (Please show work I'm having trouble figuring out where I made my mistake).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the information below that includes the sample size (n1 and n2) for each sample, the...
Given the information below that includes the sample size (n1 and n2) for each sample, the mean for each sample (x1 and x2) and the estimated population standard deviations for each case( σ1 and σ2), enter the p-value to test the following hypothesis at the 1% significance level : Ho : µ1 = µ2 Ha : µ1 > µ2   Sample 1 Sample 2 n1 = 10 n2 = 15 x1 = 115 x2 = 113 σ1 = 4.9 σ2 =...
Give a 99.9% confidence interval, for μ1−μ2μ1-μ2 given the following information. n1=50n1=50, ¯x1=2.32x¯1=2.32, s1=0.68s1=0.68 n2=35n2=35, ¯x2=1.98x¯2=1.98,...
Give a 99.9% confidence interval, for μ1−μ2μ1-μ2 given the following information. n1=50n1=50, ¯x1=2.32x¯1=2.32, s1=0.68s1=0.68 n2=35n2=35, ¯x2=1.98x¯2=1.98, s2=0.38s2=0.38 For degrees of freedom, use the smaller of (n1−1)(n1-1) and (n2−1)(n2-1) tα2tα2 = tinv(α, df) SE = sqrt((s1s1)^2 / n1n1 + (s2s2)^2 / n2n2) E = tα2tα2 * SE CI = (¯x1−¯x2)±E(x¯1-x¯2)±E Rounded both solutions to 2 decimal places. Can I have this done in excel please?
n1=37, n2=37, s1= 7.4345, s2= 3.4927, x1= 23.237, x2 = 22.526 Please perform: One Hypothesis test,...
n1=37, n2=37, s1= 7.4345, s2= 3.4927, x1= 23.237, x2 = 22.526 Please perform: One Hypothesis test, an F test for the equality of the variances of travel Times and the second test is a T-test for the equality of the means of travel times in MINUTES. The F test must be performed first in order to select either Case1 or Case 2 for the T-test. Then perform the Required T-test (either case 1 or 2 depending on your findings of...
Give a 98% confidence interval, for μ1−μ2μ1-μ2 given the following information. n1=35n1=35, ¯x1=2.69x¯1=2.69, s1=0.7s1=0.7 n2=40n2=40, ¯x2=3.15x¯2=3.15,...
Give a 98% confidence interval, for μ1−μ2μ1-μ2 given the following information. n1=35n1=35, ¯x1=2.69x¯1=2.69, s1=0.7s1=0.7 n2=40n2=40, ¯x2=3.15x¯2=3.15, s2=0.46s2=0.46 ±±   Rounded to 2 decimal places
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 6...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 6 from two normally distributed populations having means µ1 and µ2, and suppose we obtain x¯1  = 240 , x¯2  =  208 , s1 = 5, s2 = 5. Use critical values to test the null hypothesis H0: µ1 − µ2 < 22 versus the alternative hypothesis Ha: µ1 − µ2 > 22 by setting α equal to .10, .05, .01 and .001. Using the...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 7...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 7 from two normally distributed populations having means µ1 and µ2, and suppose we obtain x¯1  = 240 , x¯2  =  210 , s1 = 5, s2 = 6. Use critical values to test the null hypothesis H0: µ1 − µ2 < 20 versus the alternative hypothesis Ha: µ1 − µ2 > 20 by setting α equal to .10, .05, .01 and .001. Using the...
Suppose we have taken independent, random samples of sizes n1 = 8 and n2 = 8...
Suppose we have taken independent, random samples of sizes n1 = 8 and n2 = 8 from two normally distributed populations having means µ1 and µ2, and suppose we obtain x¯1  = 227, x¯2  =  190 , s1 = 6, s2 = 6. Use critical values to test the null hypothesis H0: µ1 − µ2 < 27 versus the alternative hypothesis Ha: µ1 − µ2 > 27 by setting α equal to .10, .05, .01 and .001. Using the equal...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 7...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 7 from two normally distributed populations having means µ1 and µ2, and suppose we obtain x⎯⎯1= 240x¯1⁢  = 240 , x⎯⎯2=210x¯2⁢  =⁢  210 , s1 = 5, s2 = 6. Use critical values to test the null hypothesis H0: µ1− µ2 < 20 versus the alternative hypothesis Ha: µ1 − µ2 > 20 by setting α equal to .10, .05, .01 and .001. Using the...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 8...
Suppose we have taken independent, random samples of sizes n1 = 7 and n2 = 8 from two normally distributed populations having means µ1 and µ2, and suppose we obtain x¯1  = 229x¯1⁢  = 229, x¯2  =  190x¯2⁢  =⁢  190, s1 = 6, s2 = 6. Use critical values to test the null hypothesis H0: µ1 − µ2 < 28 versus the alternative hypothesis Ha: µ1 − µ2 > 28 by setting α equal to .10, .05, .01 and .001....
Consider two independent random samples with the following results: n1=154 n2=351 x1=41 x2=315 Use this data...
Consider two independent random samples with the following results: n1=154 n2=351 x1=41 x2=315 Use this data to find the 98% confidence interval for the true difference between the population proportions. Step 1 of 3: Find the point estimate that should be used in constructing the confidence interval. Round your answer to three decimal places. Step 2 of 3: Find the margin of error. Round your answer to six decimal places. Step 3 of 3: Construct the 98% confidence interval. Round...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT