2. Use the SAS profit function to find the following percentiles for a normal random variable with mean 500 and standard deviation 100.
a. 5th percentile
b. 50th percentile
c. 80th percentile
d. 95th percentile
Solution :
mean = = 500
standard deviation = = 100
a. Using standard normal table,
P(Z < z) = 5%
P(Z < z) = 0.05
P(Z < -1.65) = 0.05
z = -1.65
Using z-score formula,
x = z * +
x = -1.65 * 100 + 500
x = 335
5th percentile = 335
b. Using standard normal table,
(Z < z) = 50%
P(Z < z) = 0.5
P(Z < 0) = 0.5
z = 0
Using z-score formula,
x = z * +
x = 0 * 100 + 500
x = 500
50th percentile = 500
c. Using standard normal table,
P(Z < z) = 80%
P(Z < z) = 0.8
P(Z < 0.84) = 0.8
z = 0.84
Using z-score formula,
x = z * +
x = 0.84 * 100 +500
x = 584
80th percentile = 584
d. Using standard normal table,
(Z < z) = 95%
P(Z < z) = 0.95
P(Z < 1.65) = 0.95
z = 1.65
Using z-score formula,
x = z * +
x = 1.65 * 100 + 500
x = 665
95th percentile = 665
Get Answers For Free
Most questions answered within 1 hours.