Question

3. Let Y ∼ Unif(1, 5). (See questions R1 and R2.) a. If you generate 5...

3. Let Y ∼ Unif(1, 5). (See questions R1 and R2.)

a. If you generate 5 random numbers based on Y , what is the probability you’ll get more (numbers greater than 4) than (numbers less than or equal to 4)?

b. If you take lots of random values for Y and plug them into the polynomial h(x) = (2x−1)(x+3), what value would you get out of the polynomial on average?

Homework Answers

Answer #1

CODE AND EXPLANATION....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Y ∼ Unif(1, 5) R1. Write code in R that will simulate the setup in...
Let Y ∼ Unif(1, 5) R1. Write code in R that will simulate the setup in question 3a, and hence, allow you to roughly check your answer. 3a. If you generate 5 random numbers based on Y , what is the probability you’ll get more (numbers greater than 4) than (numbers less than or equal to 4)? R2. Write code in R that will simulate the setup in question 3b, and hence, allow you to roughly check your answer. 3b....
Let X ∼ UNIF(0, 1). Find the pdf of Y = −5 ln(X) using the transformation...
Let X ∼ UNIF(0, 1). Find the pdf of Y = −5 ln(X) using the transformation technique. Note that Y is an exponential random variable. What is its parameter? Show your work.
Problem 3 For two relations R1 and R2 on a set A, we define the composition...
Problem 3 For two relations R1 and R2 on a set A, we define the composition of R2 after R1 as R2°R1 = { (x, z) ∈ A×A | (∃ y)( (x, y) ∈ R1 ∧ (y, z) ∈ R2 )} Recall that the inverse of a relation R, denoted R -1, on a set A is defined as: R -1 = { (x, y) ∈ A×A | (y, x) ∈ R)} Suppose R = { (1, 1), (1, 2),...
Find two linearly independent solutions of 2x2y′′−xy′+(−2x+1)y=0,x>0 of the form y1=xr1(1+a1x+a2x2+a3x3+⋯) y2=xr2(1+b1x+b2x2+b3x3+⋯) where r1>r2. Enter r1=...
Find two linearly independent solutions of 2x2y′′−xy′+(−2x+1)y=0,x>0 of the form y1=xr1(1+a1x+a2x2+a3x3+⋯) y2=xr2(1+b1x+b2x2+b3x3+⋯) where r1>r2. Enter r1= a1= a2= a3= r2= b1= b2= b3= Note: You can earn partial credit on this problem.
Two spacecraft are following paths in space given by r1=〈sin(t),t,t^2〉r1=〈sin⁡(t),t,t^2〉 and r2=〈cos(t),1−t,t^3〉.r2=〈cos⁡(t),1−t,t^3〉. If the temperature for...
Two spacecraft are following paths in space given by r1=〈sin(t),t,t^2〉r1=〈sin⁡(t),t,t^2〉 and r2=〈cos(t),1−t,t^3〉.r2=〈cos⁡(t),1−t,t^3〉. If the temperature for the points is given by T(x,y,z)=x^2y(5−z),T(x,y,z)=x^2y(5−z), use the Chain Rule to determine the rate of change of the difference D in the temperatures the two spacecraft experience at time t=2. (Use decimal notation. Give your answer to two decimal places.)
Let d be the usual metric on R2. (a) Find d(x,y) when x = (3,−2) and...
Let d be the usual metric on R2. (a) Find d(x,y) when x = (3,−2) and y = (−3,1). (b) Let x = (5,−1) and y = (−3,−5). Find a point z in R2 such that d(x,y) = d(y,z) = d(x,z). (c) Sketch Br(a) when a = (0,0) and r = 1. The Euclidean metric is by no means the only metric on Rn which is useful. Two more examples follow (9.2.10 and 9.2.12).
4. Let A = {1, 2, 3, 4, 5}. Let L = {(x, y) ∈ A...
4. Let A = {1, 2, 3, 4, 5}. Let L = {(x, y) ∈ A × A : x < y} and B = {(x, y) ∈ A × A : |x − y| = 1}. i. Draw graphs representing L and B. ii. Determine L ◦ B. iii. Determine B ◦ B. iv. Is B transitive? Explain.
a) Let y be the solution of the equation y ′ − [(3x^2*y)/(1+x^3)]=1+x^3 satisfying the condition  y...
a) Let y be the solution of the equation y ′ − [(3x^2*y)/(1+x^3)]=1+x^3 satisfying the condition  y ( 0 ) = 1. Find y ( 1 ). b) Let y be the solution of the equation y ′ = 4 − 2 x y satisfying the condition y ( 0 ) = 0. Use Euler's method with the horizontal step size  h = 1/2 to find an approximation to the value of the function y at x = 1. c) Let y...
2. Let Q1 = y(2), Q2 = y(3), where y = y(x) solves y' + 2xy...
2. Let Q1 = y(2), Q2 = y(3), where y = y(x) solves y' + 2xy = 2x^3 , y(0) = 1. Let Q = ln(3 + |Q1| + 2|Q2|). Then T = 5 sin^2 (100Q) satisfies:— (A) 0 ≤ T < 1. — (B) 1 ≤ T < 2. — (C) 2 ≤ T < 3. — (D) 3 ≤ T < 4. — (E) 4 ≤ T ≤ 5.
True or false? and explain please. (i) Let Z = 2X + 3. Then, Cov(Z,Y )...
True or false? and explain please. (i) Let Z = 2X + 3. Then, Cov(Z,Y ) = 2Cov(X,Y ). (j) If X,Y are uncorrelated, and Z = −5−Y + X , then V ar(Z) = V ar(X) + V ar(Y ). (k) Let X,Y be uncorrelated random variables (Cov(X,Y ) = 0) with variance 1 each. Let A = 3X + Y . Then, V ar(A) = 4. (l) If X and Y are uncorrelated (meaning that Cov[X,Y ] =...