Question

21. Answer the following questions based on a distribution with a μ = 25 and σ...

21. Answer the following questions based on a distribution with a μ = 25 and σ = 4: a. What range of scores is considered “average”? ____________ to ______________ b. What percentage of people has an average score? __________________________ c. What percentage of people has extremely high or extremely low scores? _________ d. What range of scores (requires numbers to be noted in the blank spaces) have the highest probability of being selected? __________ to _________

Homework Answers

Answer #1

The values that lie within 1 standard deviation of mean can be considered average

a. What range of scores is considered “average”?

Ans: 21 to 29

(25-4 and 25+4)

b. What percentage of people has an average score?

68%

68% of scores lie within 1 standard deviation of mean

c. What percentage of people has extremely high or extremely low scores?

5%

95% of scores lie within 2 standard deviations of mean. If a score is below 2 standard deviations of mean or above 2 standard deviations of mean, it can be considered extremely low or extremely high.

d. What range of scores have the highest probability of being selected?

17 to 33

(25-2x4 = 17 to 25+2x4 = 33)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a normal distribution, μ = 1400 and σ = 90. Approximately, what percentage of scores...
In a normal distribution, μ = 1400 and σ = 90. Approximately, what percentage of scores lie between 1310 and 1445? In a population of normally distributed scores, μ = 70 and σ = 24. Approximately what percentage of random samples of 36 scores would have means with a value in the range 64 to 76?
A population of values has a normal distribution with μ=37.2μ=37.2 and σ=76.2σ=76.2. You intend to draw...
A population of values has a normal distribution with μ=37.2μ=37.2 and σ=76.2σ=76.2. You intend to draw a random sample of size n=21n=21. Find the probability that a single randomly selected value is greater than 27.2. P(X > 27.2) = Find the probability that a sample of size n=21n=21 is randomly selected with a mean greater than 27.2. P(M > 27.2) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...
A population of values has a normal distribution with μ = 245.6 and σ = 59.3...
A population of values has a normal distribution with μ = 245.6 and σ = 59.3 . You intend to draw a random sample of size n = 21. Find P91, which is the mean separating the bottom 91% means from the top 9% means. P91 (for sample means) = 100.42 Enter your answers as numbers accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A population of values has a normal distribution with μ = 53.9 and σ = 17.9...
A population of values has a normal distribution with μ = 53.9 and σ = 17.9 . You intend to draw a random sample of size n = 28 . Find the probability that a single randomly selected value is between 57.6 and 58.3. P(57.6 < X < 58.3) = Find the probability that a sample of size n = 28 is randomly selected with a mean between 57.6 and 58.3. P(57.6 < M < 58.3) = Enter your answers...
A population of values has a normal distribution with μ = 8.2 and σ = 30.2...
A population of values has a normal distribution with μ = 8.2 and σ = 30.2 . You intend to draw a random sample of size n = 28 . Find the probability that a single randomly selected value is greater than -0.9. P(X > -0.9) = Find the probability that a sample of size n = 28 is randomly selected with a mean greater than -0.9. P(M > -0.9) = Enter your answers as numbers accurate to 4 decimal...
A population of values has a normal distribution with μ = 53.9 and σ = 71.9...
A population of values has a normal distribution with μ = 53.9 and σ = 71.9 . You intend to draw a random sample of size n = 168 . Find the probability that a single randomly selected value is between 39.5 and 70. P(39.5 < X < 70) = Find the probability that a sample of size n = 168 is randomly selected with a mean between 39.5 and 70. P(39.5 < M < 70) = Enter your answers...
Your company gives everyone who applies to your company a proficiency test. Your boss likes to...
Your company gives everyone who applies to your company a proficiency test. Your boss likes to hire people who fall in the "average" range. They feel that people who score exceptionally high on the test are more likely to leave for a better job, and people who score very low are not productive enough. The average score on the proficiency test is 750 with a variance of 400. Your boss tell you to exclude the top 14% and the bottom...
A population of values has a normal distribution with μ=153 and σ=39.5 You intend to draw...
A population of values has a normal distribution with μ=153 and σ=39.5 You intend to draw a random sample of size n=196 Find P2, which is the score separating the bottom 2% scores from the top 98% scores. P2 (for single values) = Find P2, which is the mean separating the bottom 2% means from the top 98% means. P2 (for sample means) = Enter your answers as numbers accurate to 1 decimal place. Answers obtained using z-scores rounded to...
A population of values has a normal distribution with μ=113.2μ=113.2 and σ=67σ=67. You intend to draw...
A population of values has a normal distribution with μ=113.2μ=113.2 and σ=67σ=67. You intend to draw a random sample of size n=218n=218. Find the probability that a single randomly selected value is between 100 and 125. P(100 < X < 125) = Find the probability that a sample of size n=218n=218 is randomly selected with a mean between 100 and 125. P(100 < M < 125) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using...
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw...
A population of values has a normal distribution with μ=50 and σ=98.2. You intend to draw a random sample of size n=13. Find the probability that a single randomly selected value is less than -1.7. P(X < -1.7) = Find the probability that a sample of size n=13 is randomly selected with a mean less than -1.7. P(M < -1.7) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to...