Question

You enter a special kind of chess tournament, whereby you play one game with each of...

You enter a special kind of chess tournament, whereby you play one game with each of three opponents, but you get to choose the order in which you play your opponents. You win the tournament if you win two games in a row. You know your probability of a win against each of the three opponents. What is your probability of winning the tournament, assuming that you choose the optimal order of playing the opponents?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ross and Rachel play chess. For any one game the probability of Rachel’s win is 0.35....
Ross and Rachel play chess. For any one game the probability of Rachel’s win is 0.35. If they are to play 8 times and the outcomes are independent of one another, what is the probability that Rachel will win exactly 4 games?
Two players play each other in a pool tournament of "Solids and Stripes". The first player...
Two players play each other in a pool tournament of "Solids and Stripes". The first player to win two games wins the tournament. In the game of "Solids and Stripes", it is equally likely that a player will be assigned solid balls or striped balls. Assume that 1) one-half of the balls are solids and the other half are stripes, 2) the two players have the same skill: each with a 0.5 probability of winning, 3) there are no ties,...
Suppose that you and your friend alternately play a game. Both of your and your friend’s...
Suppose that you and your friend alternately play a game. Both of your and your friend’s chance of winning in each game is 0.5. All the outcomes are independent. Each of you will play 100 games. Estimate the probability that you will win at least 5 more games than your friend. Both Y and Z follows Bin(100, 0.5). Y = number of games you win Z = number of games your friend wins.
Suppose that you and your friend alternately play a game. Both of your and your friend’s...
Suppose that you and your friend alternately play a game. Both of your and your friend’s chance of winning in each game is 0.5. All the outcomes are independent. Each of you will play 100 games. Estimate the probability that you will win at least 5 more games than your friend. Both Y and Z follows Bin(100, 0.5). Y = number of games you win Z = number of games your friend wins.
An instant lottery game gives you probability 0.03 of winning on any one play. Plays are...
An instant lottery game gives you probability 0.03 of winning on any one play. Plays are independent of each other. If you are to play four times in a row, the probability that you do not win in any of the four consecutive plays is about: (Answer as a decimal rounded to three decimal places)
You play a game where you first choose a positive integer n and then flip a...
You play a game where you first choose a positive integer n and then flip a fair coin n times. You win a prize if you get exactly 2 heads. How should you choose n to maximize your chance of winning? What is the chance of winning with optimal choice n? There are two equally good choices for the best n. Find both. Hint: Let fn be the probability that you get exactly two heads out of n coin flips....
You win a game with probability 0.511. Each game you play is independent. If you play...
You win a game with probability 0.511. Each game you play is independent. If you play the game 10 times, What is the probability that you win 6 of the 10 times.
You win a game with probability 0.569. Each game you play is independent. If you play...
You win a game with probability 0.569. Each game you play is independent. If you play the game 10 times, What is the probability that you win at 8 or more times
. A dice game is played as follows: you pay one dollar to play, then you...
. A dice game is played as follows: you pay one dollar to play, then you roll a fair six-sided die. If you roll a six, you win three dollars. Someone claims to have won a thousand dollars playing this game nine thousand times. How unlikely is this? Find an upper bound for the probability that a person playing this game will win at least a thousand dollars.
Suppose you play a series of 100 independent games. If you win a game, you win...
Suppose you play a series of 100 independent games. If you win a game, you win 4 dollars. If you lose a game, you lose 4 dollars. The chances of winning each game is 1/2. Use the central limit theorem to estimate the chances that you will win more than 50 dollars.