Question

Test whether u1<u2 at the a=0.02 level of significance for the sample data shown in the...

Test whether u1<u2 at the a=0.02 level of significance for the sample data shown in the accompanying table. Assume that the populations are normally distributed.
a=0.02, n1=33, x1=103.5, s1=12.2, n2=25, x2=114.5, s2= 13.2
determine P-value for this hypothesis test.
test statistic?
upper and lower bound???
Reject or fail to reject, why??

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Construct a 90% confidence interval for u1 = u2. Two samples are randomly selected from normal...
Construct a 90% confidence interval for u1 = u2. Two samples are randomly selected from normal populations. The sample statistics are given below. Assume that o21 = 022. n1 = 10 n2 = 12 x1 = 25 x2 = 23 s1 = 1.5 s2 = 1.9
Construct a 95% confidence interval for u1 = u2. Two samples are randomly selected from normal...
Construct a 95% confidence interval for u1 = u2. Two samples are randomly selected from normal populations. The sample statistics are given below. Assume that 021 = 022. N1 = 8 n2 = 7 x1 = 4.1 x2 = 5.5 s1 = 0.76 s2 = 2.51
Test whether mu 1 less than mu 2 at the alphaequals0.02 level of significance for the...
Test whether mu 1 less than mu 2 at the alphaequals0.02 level of significance for the sample data shown in the accompanying table. Assume that the populations are normally distributed. Population 1 Population 2 n 32 25 x overbar 103.4 114.5 s 12.2 13.2
Test whether μ1<μ2 at the α = 0.01 level of significance for the sample data shown...
Test whether μ1<μ2 at the α = 0.01 level of significance for the sample data shown in the accompanying table. Assume that the populations are normally distributed. Population 1 Population 2 n 33 25 x̅ 103.4 114.2 s 12.3 13.3 Determine the null and alternative hypothesis for this test. B. H0:μ1=μ2 H1:2μ1<μ2 Determine the​ P-value for this hypothesis test. P-value=__?__ ​(Round to three decimal places as​ needed.)
Given the information below that includes the sample size (n1 and n2) for each sample, the...
Given the information below that includes the sample size (n1 and n2) for each sample, the mean for each sample (x1 and x2) and the estimated population standard deviations for each case( σ1 and σ2), enter the p-value to test the following hypothesis at the 1% significance level : Ho : µ1 = µ2 Ha : µ1 > µ2   Sample 1 Sample 2 n1 = 10 n2 = 15 x1 = 115 x2 = 113 σ1 = 4.9 σ2 =...
Test the claim that μ 1 > μ 2. Two samples are random, independent, and come...
Test the claim that μ 1 > μ 2. Two samples are random, independent, and come from populations that are normally distributed. The sample statistics are given below. Assume that o1 ≠ o2. Use α = 0.01. n1=18 n2=13 x1=520 x2=505 s1=40   s2=25
Confidence Interval for 2-Means (2 Sample T-Interval) Given two independent random samples with the following results:...
Confidence Interval for 2-Means (2 Sample T-Interval) Given two independent random samples with the following results: n1=11 n2=17 x1¯=118 x2¯=155 s1=18 s2=13 Use this data to find the 99% confidence interval for the true difference between the population means. Assume that the population variances are equal and that the two populations are normally distributed. Round values to 2 decimal places. Lower and Upper endpoint?
Test whether μ1<μ2 at the alpha α equals =0.01 level of significance for the sample data...
Test whether μ1<μ2 at the alpha α equals =0.01 level of significance for the sample data shown in the accompanying table. Assume that the populations are normally distributed. Population 1 Population 2 n 33 25 x̅ 103.4 114.2 s 12.3 13.3 Determine the null and alternative hypothesis for this test. B. H0:μ1=μ2 H1:μ1<μ2 Determine the​ P-value for this hypothesis test. P=__?__ ​(Round to three decimal places as​ needed.)
You wish to test the following claim (Ha) at a significance level of α=0.10 . Ho:μ1=μ2...
You wish to test the following claim (Ha) at a significance level of α=0.10 . Ho:μ1=μ2 Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=20 with a mean of ¯x1=82.2 and a standard deviation of s1=18.5 from the first population. You obtain a sample of size n2=18 with a...
Consider the following data from two independent samples with equal population variances. Construct a 90% confidence...
Consider the following data from two independent samples with equal population variances. Construct a 90% confidence interval to estimate the difference in population means. Assume the population variances are equal and that the populations are normally distributed. x1 = 37.1 x2 = 32.2 s1 = 8.9 s2 = 9.1 n1 = 15 n2 = 16
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT