Question

Test the claim that μ 1 > μ 2. Two samples are random, independent, and come...

Test the claim that μ 1 > μ 2. Two samples are random, independent, and come from populations that are normally distributed. The sample statistics are given below. Assume that o1 ≠ o2. Use α = 0.01.

n1=18 n2=13

x1=520 x2=505

s1=40   s2=25

Homework Answers

Answer #1

since test statistic does not falls in rejection region we fail to reject null hypothesis
we do not have have sufficient evidence to conclude that population 1 mean is greater than population 2
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Confidence Interval for 2-Means (2 Sample T-Interval) Given two independent random samples with the following results:...
Confidence Interval for 2-Means (2 Sample T-Interval) Given two independent random samples with the following results: n1=11 n2=17 x1¯=118 x2¯=155 s1=18 s2=13 Use this data to find the 99% confidence interval for the true difference between the population means. Assume that the population variances are equal and that the two populations are normally distributed. Round values to 2 decimal places. Lower and Upper endpoint?
Exercise 2. The following information is based on independent random samples taken from two normally distributed...
Exercise 2. The following information is based on independent random samples taken from two normally distributed populations having equal variances: Sample 1 Sample 2 n1= 15 n2= 13 x1= 50 x2= 53 s1= 5 s2= 6 Based on the sample information, determine the 90% confidence interval estimate for the difference between the two population means.
Consider the test of the claims that the two samples described below come from two populations...
Consider the test of the claims that the two samples described below come from two populations whose means are equal vs. the alternative that the population means are different. Assume that the samples are independent simple random samples and that both populations are approximately normal with equal variances. Use a significance level of α=0.05 Sample 1: n1=18, x⎯⎯1=28, s1=7 Sample 2: n2=4, x⎯⎯2=30, s2=10 (a) Degrees of freedom = (b) The test statistic is t =
Consider the following data from two independent samples with equal population variances. Construct a 90% confidence...
Consider the following data from two independent samples with equal population variances. Construct a 90% confidence interval to estimate the difference in population means. Assume the population variances are equal and that the populations are normally distributed. x1 = 37.1 x2 = 32.2 s1 = 8.9 s2 = 9.1 n1 = 15 n2 = 16
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
Provided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. x1= 19, s1= 3, n1= 12, x2= 15, s2= 2, n2=13 a. What are the correct hypotheses for a​ left-tailed test? b. Compute the test statistic. c. Determine the​ P-value. d. The 90​% confidence interval is from _____ to _______ ?
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 32.2 x2 = 30.1 s1 = 2.6 s2 = 4.3 (a) What is the point estimate of the difference between the two population means? (b) What is the degrees of freedom for the t distribution? (c) At 95% confidence, what is the margin of error? (d) What is the 95% confidence interval for the difference between...
rovided below are summary statistics for independent simple random samples from two populations. Use the pooled​...
rovided below are summary statistics for independent simple random samples from two populations. Use the pooled​ t-test and the pooled​ t-interval procedure to conduct the required hypothesis test and obtain the specified confidence interval. X1=20, S1=6, N1=21, X2=22, S2=7, N2= 15 Left tailed test, a=.05 90% confidence interval The 90% confidence interval is from ____ to ____
Given two independent random samples with the following results: n 1 =8x ‾  1 =89s 1 =19  n1=8x‾1=89s1=19    ...
Given two independent random samples with the following results: n 1 =8x ‾  1 =89s 1 =19  n1=8x‾1=89s1=19    n 2 =11x ‾  2 =128s 2 =28  n2=11x‾2=128s2=28 Use this data to find the 90% 90% confidence interval for the true difference between the population means. Assume that the population variances are not equal and that the two populations are normally distributed. n1 8, n2 11, x1 89, x2 128, s1 19, s2 28 Step 2 of 3 : Find the margin of error to...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.8 x2 = 20.1 s1 = 2.6 s2 = 4.6 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2. ) (b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) (c) At 95% confidence, what is the margin...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.5 x2 = 20.1 s1 = 2.2 s2 = 4.6 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2. ) (b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) (c) At 95% confidence, what is the margin...