Question

You own a barbershop with 2 chairs (2 channels). The mean arrival rate is 8 people...

  1. You own a barbershop with 2 chairs (2 channels). The mean arrival rate is 8 people per hour. The mean service rate is 5 units per hour for each chair. Find the following:
  1. What is the probability that no one is in the system? (look in the table)
  1. What is the average number of people in the system?
  1. What is the average time a person waits for service?
  1. What is the average time a person is in the system?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You own a barbershop with 2 chairs. The individuals waiting for service go to the next...
You own a barbershop with 2 chairs. The individuals waiting for service go to the next available chair (2 channels).  The mean arrival rate is 8 people per hour. The mean service rate is 5 units per hour for each chair. Find the following: What is the probability that no one is in the system? What is the average number of people in the system? What is the average time a person waits for service? What is the average time a...
In a car pressure wash the average arrival rate is 12 cars per hour and are...
In a car pressure wash the average arrival rate is 12 cars per hour and are serviced at an average rate of 15 cars per hour, with service times exponential. It is requested: a) Probability that the system is empty. b) Average number of clients in the washing system. c) Average number of clients in the row. d) Average time a customer waits in line. e) Probability of having a row of more than 2 clients. f) Probability of waiting...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5...
Arrival Rate = 1/50 = 0.02 calls hour. Service Rate= 1 hour (travel time) + 1.5 hour (repair time) =2.5 hours With m = 1/ 2.5 = 0.4 hours per customers ** PLEASE SHOW HOW TO DO EQUATION ** OEI is satisfied that one service technician can handle the 10 existing customers. Use a waiting line model to determine the following information: (a) probability that no customers are in the system, (b) average number of customers in the waiting line,...
Speedy Oil provides a single-channel automobile oil change and lubrication service. Customers provide an arrival rate...
Speedy Oil provides a single-channel automobile oil change and lubrication service. Customers provide an arrival rate of 2.5 cars per hour. A mechanic needs 15 minutes to serve one car. Assume Poisson arrivals and exponential service time (show steps) A) What is the average number of cars in the system (auto shop) B) What is the probability that an arrival has to wait for service C) What is the average time that a car waits for the oil and lubrication...
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate...
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate of 4 cars per hour. The service rate is 5 cars per hour. Assume that arrivals follow a Poisson probability distribution and that service times follow an exponential probability distribution. A) What is the average number of cars in the system? If required, round your answer to two decimal places L = B) What is the average time that a car waits for the...
A simple queueing system has an arrival rate of 6 per hour and a service rate...
A simple queueing system has an arrival rate of 6 per hour and a service rate of 10 per hour. For this system the average time in line has been estimated to be 20 minutes. Using Little’s Law estimate the following: Average time in the queueing system Average number of customers in the queueing system Average number of customers in the queue Average number of customers in service.
7. In a waiting line situation, arrivals occur at a rate of 2 per minute, and...
7. In a waiting line situation, arrivals occur at a rate of 2 per minute, and the service times average 18 seconds. a. What is λ? b. What is μ? c. Find probability of no units in the system. d. Find average number of units in the system. e. Find average time in the waiting line. f. Find average time in the system. g. Find probability that there is one person waiting. h. Find probability an arrival will have to...
Consider a system that can be modelled as an M/M/3 queuing system with an arrival rate...
Consider a system that can be modelled as an M/M/3 queuing system with an arrival rate of 8 parts per hour (on the average) and a processing time of 10 minutes (on the average). a.) Draw the steady state rate diagram for this system (you can stop at 5 or 6 nodes). Label the arrival and service rates on the diagram as is customary. b) Is it a problem that the arrival rate is greater than the service rate? Why...
QUESTION 1 (Queing Analysis) A movie theater ticket booth has a mean arrival rate of 5...
QUESTION 1 (Queing Analysis) A movie theater ticket booth has a mean arrival rate of 5 persons every minute and the service rate is 6 persons per minute. Assuming that arrivals are Poisson distributed and service times are exponentially distributed, and that steady-state conditions exist, calculate the following characteristics of this queuing system applying the FIFO M/M/1 model: a) Utilization ratio (or traffic intensity) b) The average number of people in the system c) The average length of the queue...
With an average service rate of 15 customers per hour and an average customer arrival rate...
With an average service rate of 15 customers per hour and an average customer arrival rate of 12 customers per hour, calculate the probability that actual service time will be less than or equal to five minutes.