Question

A uniform string of length l, linear density m, and tension T is vibrating with amplitude...

A uniform string of length l, linear density m, and tension T is vibrating with amplitude a in its an th mode. Find its total energy of oscillation. The displacement of the string is given by y = an sinπnx l cos(2πνt + φ)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A string that is under 50N of tension has a linear density of 5.0 g/m. A...
A string that is under 50N of tension has a linear density of 5.0 g/m. A sinusoidal wave with amplitude 3.0cm and wavelength 2.0 m travels along the wave. What is the maximum velocity of a particle on the string?
A string with linear density 1.70 g/m is stretched along the positive x-axis with tension 18.0...
A string with linear density 1.70 g/m is stretched along the positive x-axis with tension 18.0 N. One end of the string, at x = 0.00 m, is tied to a hook that oscillates up and down at a frequency of 177.0Hz with a maximum displacement of 0.695 mm. At t = 0.00 s, the hook is at its lowest point. What is the wave speed on the string What is the wavelength?
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40 cm and its speed of propagation through the string is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum oscillation amplitude, y = + A. a) Write the equation of the wave in the form of sine [y = A sin (kx...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40...
A wave travels along a taut string in the positive x-axis direction. Its wavelength is 40 cm and its speed of propagation through the string is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum oscillation amplitude, y = + A. a) Write the equation of the wave in the form of sine [y = A sin (kx...
2-A wave travels a taut string in the positive direction of the x axis. Its wavelength...
2-A wave travels a taut string in the positive direction of the x axis. Its wavelength is 40 cm and its speed of propagation by the rope is 80 m / s. The amplitude of the wave is 0.60 cm. At t = 0 the point of the chord at x = 0 is at the point of maximum amplitude of oscillation, y = + A. a) Write the equation of the wave in the form of sine [y =...
A uniform string of length l and mass m hangs by one end from the ceiling....
A uniform string of length l and mass m hangs by one end from the ceiling. (a) Prove the speed of sound in the string a distance y above the bottom is vs = √gy, where g is the acceleration due to gravity. Hint: The tension in the string is due to string’s mass under the influence of gravity, and that tension increases as you go higher up the string. (b) You quickly and gently hit the bottom of the...
A thin rod of length L has uniform linear mass density λ (mass/length). (a) Find the...
A thin rod of length L has uniform linear mass density λ (mass/length). (a) Find the gravitational potential Φ(r) in the plane that perpendicularly bisects the rod where r is the perpendicular distance from the rod center. Assume the gravitational potential at infinity is zero. (b) Find an approximate form of your expression from part (a) when r >> L. (c) Find an approximate form of your expression from part (a) when r<< L.
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of...
A traveling wave on a string oscillates with an amplitude of 0.080m and a frequency of 2.5Hz. The speed of the waves on the string is 10 m/s. At t=0, the end from which the oscillations originate has a vertical displacement of 0m. a) Find the angular frequency, period, wavelength, and wave number. b) Write a wave function describing the wave. c) The linear mass density μ of the string is 0.300kg/m, and tension in the spring is maintained at...
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N,...
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 4 Hz is heard. The peg holding the string is loosened, decreasing the tension, and the beat frequency increases. Before it was loosened and while it still had a tension of 100 N, The frequency...
A Piano that has a string of L = 2(m) long and a mass of m...
A Piano that has a string of L = 2(m) long and a mass of m = 0.2(g) over that length. The Piano is tightened and its tension is T = 20(N). Determine the speed of propagation for a wave along that string? Let the fundamental mode has a wavelength of λ = L 2 Determine the frequency of sound associated with that string?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT