Question

Find the solution to the following equation for an age-structured population: ∂/∂t P(t,a)+ ∂/∂a P(t,a)=−δ(a)P(t,a), a≥0,t≥0...

Find the solution to the following equation for an age-structured population:
∂/∂t P(t,a)+ ∂/∂a P(t,a)=−δ(a)P(t,a), a≥0,t≥0
P(0,a) = P0(a)
P(t,0) = C
where C > 0 is a constant. Bonus: What is the asymptotic behavior of the population (total size, age-distribution if possible) as t → ∞? If limit exists, is it a solution to the PDE and, if so, what kind of solution?     

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a logistic equation for a pipulation P(T) in which there is harvesting can be written as...
a logistic equation for a pipulation P(T) in which there is harvesting can be written as (dP/dt)=aP(1-(P/M))-h, P(0)=P0 (a) if a=22, M=11, h=48, what are the equilibrium solutions for the logistic equation? (b) if P(0) = 4, what will the long-term behavior of the population?
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) =...
8. Find the solution of the following PDE: utt − 9uxx = 0 u(0, t) = u(3π, t) = 0 u(x, 0) = sin(x/3) ut (x, 0) = 4 sin(x/3) − 6 sin(x) 9. Find the solution of the following PDE: utt − uxx = 0 u(0, t) = u(1, t) = 0 u(x, 0) = 0 ut(x, 0) = x(1 − x) 10. Find the solution of the following PDE: (1/2t+1)ut − uxx = 0 u(0,t) = u(π,t) =...
The population P(t) of bacteria grows according to the logistics equation dP/dt=P(12−P/4000), where t is in...
The population P(t) of bacteria grows according to the logistics equation dP/dt=P(12−P/4000), where t is in hours. It is known that P(0)=700. (1) What is the carrying capacity of the model? (2) What is the size of the bacteria population when it is having is fastest growth?
Why a model like P(t) = P 0 e kt, where P0 is the initial population,...
Why a model like P(t) = P 0 e kt, where P0 is the initial population, would not be plausible? What are the virtues of the logistic model?
Find the solution to the initial value problem (y′−e−t+5)/y=−5,   y(0)=−4 Discuss the behavior of the solution y(t)y(t)...
Find the solution to the initial value problem (y′−e−t+5)/y=−5,   y(0)=−4 Discuss the behavior of the solution y(t)y(t) as tt becomes large. Does limt→∞y(t)limt→∞y(t) exist? If the limit exists, enter its value. If the limit does not exist, enter DNE.
Find the solution to the initial value problem (y′−e−t+5)/y=−5,   y(0)=−4 Discuss the behavior of the solution y(t)y(t)...
Find the solution to the initial value problem (y′−e−t+5)/y=−5,   y(0)=−4 Discuss the behavior of the solution y(t)y(t) as tt becomes large. Does limt→∞y(t)limt→∞y(t) exist? If the limit exists, enter its value. If the limit does not exist, enter DNE.
Suppose that the certain population obeys the logistics equation dP / dt = 0.025·P ·(1−P /...
Suppose that the certain population obeys the logistics equation dP / dt = 0.025·P ·(1−P / C) where C is the carrying capacity. If the initial population P0 = C/3, find the time t∗ at which the initial population has doubled, i.e., find time t∗ such that P(t∗) = 2P0 = 2C/3.
Suppose that Newton’s method is applied to find the solution p = 0 of the equation...
Suppose that Newton’s method is applied to find the solution p = 0 of the equation e^x −1−x− (1/2)x^2 = 0. It is known that, starting with any p0 > 0, the sequence {pn} produced by the Newton’s method is monotonically decreasing (i.e., p0 >p1 >p2 >···)and converges to 0. Prove that {pn} converges to 0 linearly with rate 2/3. (hint: You need to have the patience to use L’Hospital rule repeatedly. ) Please do the proof.
The population of the world was about 5.3 billion in 1990 (t = 0) and about...
The population of the world was about 5.3 billion in 1990 (t = 0) and about 6.1 billion in 2000 (t = 10). Assuming that the carrying capacity for the world population is 50 billion, the logistic differential equation dP =kP(50−P)dt models the population of the world P(t) (measured in billions), where t is the number of years after 1990. Solve this differential equation for P(t) and use this solution to predict what the population will be in 2050 according...
Please solve these 2 questions step by step trying to learn for an exam. 1.Find an...
Please solve these 2 questions step by step trying to learn for an exam. 1.Find an explicit solution of the following differential equation. y' =xy-xy^2, y(0) =3 2. Suppose a population satisfies, dP/dt = 0.02P-0.00005P^2; P(0) =40 =P0, Where t is measured in Years. a) what is the carrying capacity M? b)for what values of P is the population increasing the fastest? c)Given the solution of the differential equation. P(t) =M/1+Ae^-0.02t, where M is the carrying capacity and A =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT