Question

The centers of the moon and the Earth are separated by 3.84 x 108 m. The...

The centers of the moon and the Earth are separated by 3.84 x 108 m. The moon has a mass of 7.34 x 1022 kg. The mass of the earth is 5.97 x 1024 kg.

Given:

a. Find the gravitational attraction between the earth and moon.

b. Find the acceleration of the moon toward the earth.

c. Find the speed of the moon in its orbit.

d. Find the circumference of the orbit.

e. Calculate the time it takes the moon to travel around the earth in days

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If 1% of the Earth’s mass were transferred to the Moon, how far would the center...
If 1% of the Earth’s mass were transferred to the Moon, how far would the center of mass of the Earth-Moon-population system move? The mass of the Earth is 5.97×1024 kg and that of the Moon is 7.34×1022 kg. The radius of the Moon’s orbit is about 3.84×105m.
The Earth has a mass of 5.97 * 1024 kg and the Moon has a mass...
The Earth has a mass of 5.97 * 1024 kg and the Moon has a mass of 7.35 * 1022 kg. If they are separated by a distance of 3.85 * 105 km, what is the force (in N) between the Earth and the Moon? (Enter your answer in scientific notation: 1.23E12 means 1.23 * 1012) Then, assume the Moon travels in a perfect circle around the Earth, with masses and distances given above, and takes 27.32 days to complete...
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m....
A satellite is in a circular orbit around the Earth at an altitude of 3.84  106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38  106 m, and the mass of the Earth is 5.98  1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s2 toward the center of the...
uring a solar eclipse, the Moon is positioned directly between Earth and the Sun. The masses...
uring a solar eclipse, the Moon is positioned directly between Earth and the Sun. The masses of the Sun, Earth, and the Moon are 1.99×1030 kg,1.99×1030 kg, 5.98×1024 kg,5.98×1024 kg, and 7.36×1022 kg,7.36×1022 kg, respectively. The Moon's mean distance from Earth is 3.84×108 m,3.84×108 m, and Earth's mean distance from the Sun is 1.50×1011 m.1.50×1011 m. The gravitational constant is G=6.67×10−11 N⋅m2/kg2.G=6.67×10−11 N·m2/kg2. Find the magnitude FF of the net gravitational force acting on the Moon during the solar eclipse...
The Earth has a mass of 5.97 * 1024 kg and the Moon has a mass...
The Earth has a mass of 5.97 * 1024 kg and the Moon has a mass of 7.35 * 1022 kg. If they are separated by a distance of 3.85 * 105 km, what is the force (in N) between the Earth and the Moon? The answer will be in Scientific Notation.
The moon is an Earth satellite of mass 9.35 x 1022 kg, whose average distance from...
The moon is an Earth satellite of mass 9.35 x 1022 kg, whose average distance from the centre of Earth is 4.85 x 108 m. What is the gravitational potential energy of the moon with respect to Earth? What is the kinetic energy and the velocity of the moon in Earth's orbit? What is the binding energy of the moon to Earth? What is the total mechanical energy of the moon in its orbit?
Given that the mass of the Earth is 5.972 X 1024 kg, the mass of the...
Given that the mass of the Earth is 5.972 X 1024 kg, the mass of the Moon is 7.346 X 1022 kg, and the distance, center of mass to center of mass is 3.85 X 105 km What is the force of gravitational attraction between the two?
Calculate the force of gravity between the Earth and the Moon. The mass of the Earth...
Calculate the force of gravity between the Earth and the Moon. The mass of the Earth is 6.0 x 1024 kg and the mass of the Moon is 7.4 x 1022 kg. The average distance between the Earth and the Moon is 3.8 x 108 m. (G = 6.67 x 10-11 Nm2/kg2 ) Show your work.
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational...
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational pull is stronger than that of Earth’s. Find the distance of this point from the center of the Earth. The masses of the Earth and the Moon are 5.98 × 1024 kg and 7.36 × 1022 kg, respectively, and the distance from the Earth to the Moon is 3.84 × 108 m. Answer in units of m. b) What would the acceleration of the...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙108 km,...
The radius of the Earth’s orbit around the sun (assumed to be circular) is 1.50∙108 km, and the Earth travels around this obit in 365 days. The mass of the Earth is 5.97∙1024 kg. magnitude of the orbital velocity of the Earth: 2.98.104 m/s acceleration of the earth toward the sun: 5.91.10-3 m/s2 a) What is the magnitude of centripetal force acting on the Earth? b) What is responsible for providing this centripetal force? c) Calculate the gravitational acceleration OF...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT