Question

———- Vo. / | | - —>. ____ /. (not to scale) |______|. | ____|. /...

———- Vo. /
| | - —>. ____ /. (not to scale)
|______|. | ____|. /

A 5.178 kilogram steel block is launched across a frictionless surface at 2.366 m/s, towards a 0.411 kilogram steel block initially at rest. After the impact, the smaller block goes up the scale at 13.0 degrees above the horizontal. the coefficent of static friction between the ramp and the block is us= 0.301, however the kinetic friction coefficent is yet to be determined

A)what are the velocities of each of th blocks after the collison

B) If there was no friction on the ramp, to what height (vertically) would the smaller block rise along the ramp.

C)the block rises to a height of 0.549 m above its starting position, how much work did kinetic friction do on the block

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The...
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The spring has a spring constant of 1180 N/m and is compressed a distance, x, before being released. The block slides up a frictionless ramp of height, H=0.550 m, above where the block leaves the spring. At the top of the ramp it flies horizontally off the ramp. Just before leaving the ramp, the kinetic energy of the block is 8.54 J. After leaving the...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown in the figure. Block A, with a mass mA = 2.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces and the constant-acceleration equations, but see if you can apply energy ideas instead. Use g = 10 m/s2. When the system is released...
There is a variable amount of friction between a block of mass m and a ramp...
There is a variable amount of friction between a block of mass m and a ramp at an angle θ above the horizontal. The kinetic and static coefficients of friction are equal but vary as µ=Ax, where x is measured along the ramp and x = 0 is the bottom of the ramp. The block is sent up the ramp with an initial speed v0, and comes to a stop somewhere on the ramp. In the following parts, take your...
1) Calculate the range for an object that is launched at an angle of 27.00 degrees...
1) Calculate the range for an object that is launched at an angle of 27.00 degrees above the horizontal and an initial height of 1.50m. the initial speed is 190.00 m/s. 2)an astronaut brings a simple pendulum to another planet and performs an experiment. the astronaut measures the period of the pendulum for several different lengths and then plots the data as a log[Period] vs. log[Length] graph. the equation of the line is y=0.503x + 0.0500. determine the acceleration due...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 35 ∘ angle. The block’s initial speed is 10 m/s . The coefficient of kinetic friction between the block and the ramp is μk = 0.20. What vertical height does the block reach above its starting point? Part A What vertical height does the block reach above its starting point? Express your answer using two significant figures. y = 99   m   SubmitPrevious AnswersRequest Answer...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a...
A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 33 degree angle. The block's initial speed is 14 m/s . The coefficient of kinetic friction of wood on wood is μk=0.200 What vertical height does the block reach above its starting point? Express your answer to two significant figures and include the appropriate units. What speed does it have when it slides back down to its starting point? Express your answer to two...
1) a) A block of mass m slides down an inclined plane starting from rest. If...
1) a) A block of mass m slides down an inclined plane starting from rest. If the surface is inclined an angle theta above the horizontal, and the block reaches a speed V after covering a distance D along the incline, what is the coefficient of kinetic friction? b) at a distance D1 (still on the incline), the block comes to an instantaneous standstill against a spring with spring constant k. How far back up does the block? Why do...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m is the ball’s mass and v0 is the ball’s speed. The pendulum is not moving so its contribution to the total momentum is zero. After the collision, the total momentum is pafter = (m + M) V, where m is the ball’s mass, M is the pendulum mass, and V is the velocity of the pendulum with the ball stuck inside (see the picture...
Two boxes are stacked, with box B placed on top of box A. If box A...
Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move with a decreasing speed, is there any friction on either box? (a) Kinetic friction on box A and no friction on box B (b) Kinetic friction on box A and static friction on box B (c) Kinetic friction on box A and kinetic friction on box B (d) Static friction on box A and kinetic friction on...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT